LOG IN
SIGN UP
Tech Job Finder - Find Software, Technology Sales and Product Manager Jobs.
Sign In
OR continue with e-mail and password
E-mail address
Password
Don't have an account?
Reset password
Join Tech Job Finder
OR continue with e-mail and password
E-mail address
Username
Password
Confirm Password
How did you hear about us?
By signing up, you agree to our Terms & Conditions and Privacy Policy.

2026 Machine Learning Center of Excellence (Time Series & Reinforcement Learning) - Summer Associate

at J.P. Morgan

Back to all Data Science / AI / ML jobs
J.P. Morgan logo
Bulge Bracket Investment Banks

2026 Machine Learning Center of Excellence (Time Series & Reinforcement Learning) - Summer Associate

at J.P. Morgan

InternshipNo visa sponsorshipData Science/AI/ML

Posted 16 hours ago

No clicks

Compensation
Not specified

Currency: Not specified

City
London
Country
United Kingdom

Summer Associate within JPMorgan Chase's Machine Learning Center of Excellence (MLCOE) applying advanced ML and deep learning techniques to problems in time series, reinforcement learning, NLP, speech, and recommendation systems. The role involves independent research, experimentation, and collaboration with business, tech, and compliance teams to develop and deploy production-ready models. Interns will be mentored, participate in a speaker series, and work on projects that can be integrated into product pipelines or published in top AI/ML venues. The position is based in London and targets PhD candidates or recent PhD graduates.

Location: LONDON, United Kingdom

The Chief Data & Analytics Office (CDAO) at JPMorgan Chase is responsible for accelerating the firm’s data and analytics journey. As a part of CDAO, The Machine Learning Center of Excellence (MLCOE) partners across the firm to shape, create, and deploy Machine Learning Solutions for our most challenging business problems. This includes ensuring the quality, integrity, and security of the company's data, as well as leveraging this data to generate insights and drive decision-making. The CDAO is also responsible for developing and implementing solutions that support the firm’s commercial goals by harnessing artificial intelligence and machine learning technologies to develop new products, improve productivity, and enhance risk management effectively and responsibly.

 

As a Summer Associate within the MLCOE, you will apply sophisticated machine learning methods to a wide variety of complex domains within natural language processing, large language models, speech recognition and understanding, reinforcement learning, and recommendation systems. You must excel in working in a highly collaborative environment with their MLCOE mentors, business experts and technologists in order to conduct independent research and deploy solutions into production. You must have a strong passion for machine learning, solid expertise in deep learning with hands-on implementation experience, and invest independent time towards learning, researching, and experimenting with innovations in the field. Learn more about our MLCOE team at jpmorgan.com/mlcoe.

 

Our Summer Associate Internship Program begins in June, depending on your academic calendar. Your professional growth and development will be supported throughout the internship program via project work related to your academic and professional interests, mentorship, an engaging speaker series with our senior leaders and more. Your project will have direct impact on JPMorgan’s businesses, will be integrated into our product pipelines, or be part of published research in top AI/ML conferences. Full-time employment offers may be extended upon successful completion of the program.

 

Job responsibilities

  • Research and explore new machine learning methods through independent study, attending industry-leading conferences, experimentation and participating in our knowledge sharing community
  • Develop state-of-the art machine learning models to solve real-world problems and apply it to tasks such as time-series predictions, market modelling, and decision optimizations.
  • Collaborate with multiple partner teams such as Business, Technology, Product Management, Legal, Compliance, Strategy and Business Management to deploy solutions into production

 

Required qualifications, capabilities, and skills

  • Ph.D. or in the last year of a Ph.D. program in machine learning, statistics, mathematics, computer science, economics, finance, science, engineering, or other quantitative fields
  • Knowledge of machine learning / data science theory, techniques, and tools
  • Scientific thinking, ability to work with literature and the ability to implement complex projects
  • Ability to understand business problem, study literature for a solution approach, write high quality code for the chosen method, design training and experimentation to validate the algorithms and implementation, and to evaluate intrinsic and extrinsic metrics for model performance aligned with business goals
  • Solid written and spoken communication to effectively communicate technical concepts and results to both technical and business audiences
  • Ability to work both independently and in highly collaborative team environments
  • Excellent analytical, quantitative, and problem-solving skills and demonstrated research ability
  • Curious, hardworking, detail-oriented and motivated by complex analytical problems

 

Preferred qualifications, capabilities, and skills

  • Knowledge of Financial Mathematics, Stochastic Calculus, Bayesian techniques, Statistics, State-Space models, MCMC, DSGE models, MCTS / distributed compute, NLP, accounting
  • Knowledge and experience with Reinforcement Learning methods
  • Knowledge of python, Tensorflow, tf-agent, Ray, RLLib, Tune, or other ML frameworks, etc.
  • Experience with any of OOP, graph-based computation engines, large scale software development, C++/Java/CUDA, performance focused implementations, numerical algorithms, distributed computing, cloud computing, data transformation pipelines
  • Familiarity with continuous integration models and unit test development
  • Published research in areas of natural language processing, speech recognition, reinforcement learning, or deep learning at a major conference or journal
  • Strong passion for machine learning and habits to invest independent time towards learning, researching, and experimenting with innovations across a variety of fields. 
MLCOE is a world-class machine learning team with state-of-the-art methods to solve financial problems using our unique datasets.

2026 Machine Learning Center of Excellence (Time Series & Reinforcement Learning) - Summer Associate

at J.P. Morgan

Back to all Data Science / AI / ML jobs
J.P. Morgan logo
Bulge Bracket Investment Banks

2026 Machine Learning Center of Excellence (Time Series & Reinforcement Learning) - Summer Associate

at J.P. Morgan

InternshipNo visa sponsorshipData Science/AI/ML

Posted 16 hours ago

No clicks

Compensation
Not specified

Currency: Not specified

City
London
Country
United Kingdom

Summer Associate within JPMorgan Chase's Machine Learning Center of Excellence (MLCOE) applying advanced ML and deep learning techniques to problems in time series, reinforcement learning, NLP, speech, and recommendation systems. The role involves independent research, experimentation, and collaboration with business, tech, and compliance teams to develop and deploy production-ready models. Interns will be mentored, participate in a speaker series, and work on projects that can be integrated into product pipelines or published in top AI/ML venues. The position is based in London and targets PhD candidates or recent PhD graduates.

Location: LONDON, United Kingdom

The Chief Data & Analytics Office (CDAO) at JPMorgan Chase is responsible for accelerating the firm’s data and analytics journey. As a part of CDAO, The Machine Learning Center of Excellence (MLCOE) partners across the firm to shape, create, and deploy Machine Learning Solutions for our most challenging business problems. This includes ensuring the quality, integrity, and security of the company's data, as well as leveraging this data to generate insights and drive decision-making. The CDAO is also responsible for developing and implementing solutions that support the firm’s commercial goals by harnessing artificial intelligence and machine learning technologies to develop new products, improve productivity, and enhance risk management effectively and responsibly.

 

As a Summer Associate within the MLCOE, you will apply sophisticated machine learning methods to a wide variety of complex domains within natural language processing, large language models, speech recognition and understanding, reinforcement learning, and recommendation systems. You must excel in working in a highly collaborative environment with their MLCOE mentors, business experts and technologists in order to conduct independent research and deploy solutions into production. You must have a strong passion for machine learning, solid expertise in deep learning with hands-on implementation experience, and invest independent time towards learning, researching, and experimenting with innovations in the field. Learn more about our MLCOE team at jpmorgan.com/mlcoe.

 

Our Summer Associate Internship Program begins in June, depending on your academic calendar. Your professional growth and development will be supported throughout the internship program via project work related to your academic and professional interests, mentorship, an engaging speaker series with our senior leaders and more. Your project will have direct impact on JPMorgan’s businesses, will be integrated into our product pipelines, or be part of published research in top AI/ML conferences. Full-time employment offers may be extended upon successful completion of the program.

 

Job responsibilities

  • Research and explore new machine learning methods through independent study, attending industry-leading conferences, experimentation and participating in our knowledge sharing community
  • Develop state-of-the art machine learning models to solve real-world problems and apply it to tasks such as time-series predictions, market modelling, and decision optimizations.
  • Collaborate with multiple partner teams such as Business, Technology, Product Management, Legal, Compliance, Strategy and Business Management to deploy solutions into production

 

Required qualifications, capabilities, and skills

  • Ph.D. or in the last year of a Ph.D. program in machine learning, statistics, mathematics, computer science, economics, finance, science, engineering, or other quantitative fields
  • Knowledge of machine learning / data science theory, techniques, and tools
  • Scientific thinking, ability to work with literature and the ability to implement complex projects
  • Ability to understand business problem, study literature for a solution approach, write high quality code for the chosen method, design training and experimentation to validate the algorithms and implementation, and to evaluate intrinsic and extrinsic metrics for model performance aligned with business goals
  • Solid written and spoken communication to effectively communicate technical concepts and results to both technical and business audiences
  • Ability to work both independently and in highly collaborative team environments
  • Excellent analytical, quantitative, and problem-solving skills and demonstrated research ability
  • Curious, hardworking, detail-oriented and motivated by complex analytical problems

 

Preferred qualifications, capabilities, and skills

  • Knowledge of Financial Mathematics, Stochastic Calculus, Bayesian techniques, Statistics, State-Space models, MCMC, DSGE models, MCTS / distributed compute, NLP, accounting
  • Knowledge and experience with Reinforcement Learning methods
  • Knowledge of python, Tensorflow, tf-agent, Ray, RLLib, Tune, or other ML frameworks, etc.
  • Experience with any of OOP, graph-based computation engines, large scale software development, C++/Java/CUDA, performance focused implementations, numerical algorithms, distributed computing, cloud computing, data transformation pipelines
  • Familiarity with continuous integration models and unit test development
  • Published research in areas of natural language processing, speech recognition, reinforcement learning, or deep learning at a major conference or journal
  • Strong passion for machine learning and habits to invest independent time towards learning, researching, and experimenting with innovations across a variety of fields. 
MLCOE is a world-class machine learning team with state-of-the-art methods to solve financial problems using our unique datasets.