
Senior/Lead Data Scientist
at Klarna
Posted 19 hours ago
No clicks
- Compensation
- Not specified
- City
- Not specified
- Country
- Not specified
Currency: Not specified
Lead Data Scientist role focused on consumer credit risk modelling, responsible for designing and maintaining real-time Probability of Default (PD) and portfolio valuation models using statistical and ML methods. You will develop calibration and validation frameworks, ensure regulatory and fairness compliance, and explore novel methodologies including LLMs for explainability and feature engineering. The role requires close collaboration with cross-functional teams to turn modelling insights into underwriting strategies, economic return optimisation, and Klarna's long-term modelling vision.
What you will do
As a Lead Data Scientist within credit risk modelling, you will shape Klarna’s next-generation consumer-level credit scoring and portfolio valuation models. You’ll design and maintain real-time PD (Probability of Default) models using statistical and ML approaches, integrating them into frameworks for underwriting and economic return optimization. You’ll develop calibration frameworks, ensure compliance with regulatory and fairness standards, and explore novel methodologies—including LLMs for explainability and feature engineering. Collaborating with cross-functional teams, you’ll translate modelling insights into strategic credit policies and business value, contributing to Klarna’s long-term modelling vision.
Who you are
• 5+ years experience in credit risk modelling for consumer lending, credit cards or BNPL
• Deep proficiency in PD model development and validation, with strong knowledge of calibration techniques
• Advanced Python and SQL skills; familiar with XGBoost, scikit-learn, pandas, MLFlow
• Experience with explainability frameworks such as SHAP, LIME, PDP
• Ability to communicate technical concepts clearly and influence cross-functional decisions
• Familiarity with real-time modelling and current trends in ML and credit analytics
Awesome to have
• Hands-on experience using LLMs to extract features from unstructured data (e.g., customer communications, credit applications)
• Knowledge of integrating third-party credit bureau data into production models
• Understanding of champion/challenger model frameworks and A/B testing infrastructure
• Exposure to loan-level economic modelling, including cost-of-capital and loss metrics
Please include a CV in English.
Curious to learn more about Klarna and what it’s like to work here? Explore our https://www.klarna.com/careers/





