LOG IN
SIGN UP
Tech Job Finder - Find Software, Technology Sales and Product Manager Jobs.
Sign In
OR continue with e-mail and password
E-mail address
Password
Don't have an account?
Reset password
Join Tech Job Finder
OR continue with e-mail and password
E-mail address
Username
Password
Confirm Password
How did you hear about us?
By signing up, you agree to our Terms & Conditions and Privacy Policy.

Quantitative Researcher - Machine Learning

at Point72

Back to all Data Science / AI / ML jobs
Point72 logo
Hedge Funds

Quantitative Researcher - Machine Learning

at Point72

GraduateNo visa sponsorshipData Science/AI/ML

Posted a day ago

No clicks

Compensation
$200,000 – $300,000 USD

Currency: $ (USD)

City
New York City
Country
United States

We are seeking a quantitative researcher for Cubist's Machine Learning Research group to develop and evaluate machine learning-driven trading models. The role covers the full research lifecycle: data ingestion and processing, feature engineering, prototyping, implementation, testing and performance evaluation, with emphasis on deep learning, sequential/time-series modeling and NLP. Candidates should have (or be pursuing) a PhD, strong programming skills (Python/R) and experience with ML libraries such as TensorFlow or PyTorch. This is an early-career research role applying ML to systematic investing within a collaborative, data-driven environment.

try{ NetworkTracking.init('/_ui/networks/tracking/NetworkTrackingServlet', 'network', '0660a000002nc9j'); }catch(x){}(function(UITheme) { UITheme.getUITheme = function() { return UserContext.uiTheme; }; }(window.UITheme = window.UITheme || {}));
a { a:hover { cursor: pointer; color: var(--color-gold); } } .jdfooterbutton:hover{ background: #f5f4ee !important; border-color: #18181a !important; color: #18181a !important; } @media (max-width: 767px) { .u-card{ margin-top: -200px; } .o-heading--xl.l-container--l{ padding-top:130px; } } @media (min-width: 768px) { .u-card{ margin-top: -100px; } .o-heading--xl.l-container--l{ padding-top:110px; } } .tk-proxima-nova{font-family:"proxima-nova",sans-serif;}@font-face{font-family:tk-proxima-nova-n7;src:url(https://use.typekit.net/af/925423/00000000000000003b9b038f/27/l?primer=7cdcb44be4a7db8877ffa5c0007b8dd865b3bbc383831fe2ea177f62257a9191&fvd=n7&v=3) format("woff2"),url(https://use.typekit.net/af/925423/00000000000000003b9b038f/27/d?primer=7cdcb44be4a7db8877ffa5c0007b8dd865b3bbc383831fe2ea177f62257a9191&fvd=n7&v=3) format("woff"),url(https://use.typekit.net/af/925423/00000000000000003b9b038f/27/a?primer=7cdcb44be4a7db8877ffa5c0007b8dd865b3bbc383831fe2ea177f62257a9191&fvd=n7&v=3) format("opentype");font-weight:700;font-style:normal;}@font-face{font-family:tk-proxima-nova-i7;src:url(https://use.typekit.net/af/cd78b3/00000000000000003b9b038e/27/l?primer=7cdcb44be4a7db8877ffa5c0007b8dd865b3bbc383831fe2ea177f62257a9191&fvd=i7&v=3) format("woff2"),url(https://use.typekit.net/af/cd78b3/00000000000000003b9b038e/27/d?primer=7cdcb44be4a7db8877ffa5c0007b8dd865b3bbc383831fe2ea177f62257a9191&fvd=i7&v=3) format("woff"),url(https://use.typekit.net/af/cd78b3/00000000000000003b9b038e/27/a?primer=7cdcb44be4a7db8877ffa5c0007b8dd865b3bbc383831fe2ea177f62257a9191&fvd=i7&v=3) format("opentype");font-weight:700;font-style:italic;}@font-face{font-family:tk-proxima-nova-n4;src:url(https://use.typekit.net/af/219c30/00000000000000003b9b0389/27/l?primer=7cdcb44be4a7db8877ffa5c0007b8dd865b3bbc383831fe2ea177f62257a9191&fvd=n4&v=3) format("woff2"),url(https://use.typekit.net/af/219c30/00000000000000003b9b0389/27/d?primer=7cdcb44be4a7db8877ffa5c0007b8dd865b3bbc383831fe2ea177f62257a9191&fvd=n4&v=3) format("woff"),url(https://use.typekit.net/af/219c30/00000000000000003b9b0389/27/a?primer=7cdcb44be4a7db8877ffa5c0007b8dd865b3bbc383831fe2ea177f62257a9191&fvd=n4&v=3) format("opentype");font-weight:400;font-style:normal;}@font-face{font-family:tk-proxima-nova-i4;src:url(https://use.typekit.net/af/0de7d4/00000000000000003b9b0388/27/l?primer=7cdcb44be4a7db8877ffa5c0007b8dd865b3bbc383831fe2ea177f62257a9191&fvd=i4&v=3) format("woff2"),url(https://use.typekit.net/af/0de7d4/00000000000000003b9b0388/27/d?primer=7cdcb44be4a7db8877ffa5c0007b8dd865b3bbc383831fe2ea177f62257a9191&fvd=i4&v=3) format("woff"),url(https://use.typekit.net/af/0de7d4/00000000000000003b9b0388/27/a?primer=7cdcb44be4a7db8877ffa5c0007b8dd865b3bbc383831fe2ea177f62257a9191&fvd=i4&v=3) format("opentype");font-weight:400;font-style:italic;}@font-face{font-family:tk-proxima-nova-n3;src:url(https://use.typekit.net/af/ed2fe5/00000000000000003b9b0387/27/l?primer=7cdcb44be4a7db8877ffa5c0007b8dd865b3bbc383831fe2ea177f62257a9191&fvd=n3&v=3) format("woff2"),url(https://use.typekit.net/af/ed2fe5/00000000000000003b9b0387/27/d?primer=7cdcb44be4a7db8877ffa5c0007b8dd865b3bbc383831fe2ea177f62257a9191&fvd=n3&v=3) format("woff"),url(https://use.typekit.net/af/ed2fe5/00000000000000003b9b0387/27/a?primer=7cdcb44be4a7db8877ffa5c0007b8dd865b3bbc383831fe2ea177f62257a9191&fvd=n3&v=3) format("opentype");font-weight:300;font-style:normal;}@font-face{font-family:tk-proxima-nova-n5;src:url(https://use.typekit.net/af/77eeb5/00000000000000003b9b038b/27/l?primer=7cdcb44be4a7db8877ffa5c0007b8dd865b3bbc383831fe2ea177f62257a9191&fvd=n5&v=3) format("woff2"),url(https://use.typekit.net/af/77eeb5/00000000000000003b9b038b/27/d?primer=7cdcb44be4a7db8877ffa5c0007b8dd865b3bbc383831fe2ea177f62257a9191&fvd=n5&v=3) format("woff"),url(https://use.typekit.net/af/77eeb5/00000000000000003b9b038b/27/a?primer=7cdcb44be4a7db8877ffa5c0007b8dd865b3bbc383831fe2ea177f62257a9191&fvd=n5&v=3) format("opentype");font-weight:500;font-style:normal;}@font-face{font-family:proxima-nova;src:url(https://use.typekit.net/af/925423/00000000000000003b9b038f/27/l?primer=7cdcb44be4a7db8877ffa5c0007b8dd865b3bbc383831fe2ea177f62257a9191&fvd=n7&v=3) format("woff2"),url(https://use.typekit.net/af/925423/00000000000000003b9b038f/27/d?primer=7cdcb44be4a7db8877ffa5c0007b8dd865b3bbc383831fe2ea177f62257a9191&fvd=n7&v=3) format("woff"),url(https://use.typekit.net/af/925423/00000000000000003b9b038f/27/a?primer=7cdcb44be4a7db8877ffa5c0007b8dd865b3bbc383831fe2ea177f62257a9191&fvd=n7&v=3) format("opentype");font-weight:700;font-style:normal;}@font-face{font-family:proxima-nova;src:url(https://use.typekit.net/af/cd78b3/00000000000000003b9b038e/27/l?primer=7cdcb44be4a7db8877ffa5c0007b8dd865b3bbc383831fe2ea177f62257a9191&fvd=i7&v=3) format("woff2"),url(https://use.typekit.net/af/cd78b3/00000000000000003b9b038e/27/d?primer=7cdcb44be4a7db8877ffa5c0007b8dd865b3bbc383831fe2ea177f62257a9191&fvd=i7&v=3) format("woff"),url(https://use.typekit.net/af/cd78b3/00000000000000003b9b038e/27/a?primer=7cdcb44be4a7db8877ffa5c0007b8dd865b3bbc383831fe2ea177f62257a9191&fvd=i7&v=3) format("opentype");font-weight:700;font-style:italic;}@font-face{font-family:proxima-nova;src:url(https://use.typekit.net/af/219c30/00000000000000003b9b0389/27/l?primer=7cdcb44be4a7db8877ffa5c0007b8dd865b3bbc383831fe2ea177f62257a9191&fvd=n4&v=3) format("woff2"),url(https://use.typekit.net/af/219c30/00000000000000003b9b0389/27/d?primer=7cdcb44be4a7db8877ffa5c0007b8dd865b3bbc383831fe2ea177f62257a9191&fvd=n4&v=3) format("woff"),url(https://use.typekit.net/af/219c30/00000000000000003b9b0389/27/a?primer=7cdcb44be4a7db8877ffa5c0007b8dd865b3bbc383831fe2ea177f62257a9191&fvd=n4&v=3) format("opentype");font-weight:400;font-style:normal;}@font-face{font-family:proxima-nova;src:url(https://use.typekit.net/af/0de7d4/00000000000000003b9b0388/27/l?primer=7cdcb44be4a7db8877ffa5c0007b8dd865b3bbc383831fe2ea177f62257a9191&fvd=i4&v=3) format("woff2"),url(https://use.typekit.net/af/0de7d4/00000000000000003b9b0388/27/d?primer=7cdcb44be4a7db8877ffa5c0007b8dd865b3bbc383831fe2ea177f62257a9191&fvd=i4&v=3) format("woff"),url(https://use.typekit.net/af/0de7d4/00000000000000003b9b0388/27/a?primer=7cdcb44be4a7db8877ffa5c0007b8dd865b3bbc383831fe2ea177f62257a9191&fvd=i4&v=3) format("opentype");font-weight:400;font-style:italic;}@font-face{font-family:proxima-nova;src:url(https://use.typekit.net/af/ed2fe5/00000000000000003b9b0387/27/l?primer=7cdcb44be4a7db8877ffa5c0007b8dd865b3bbc383831fe2ea177f62257a9191&fvd=n3&v=3) format("woff2"),url(https://use.typekit.net/af/ed2fe5/00000000000000003b9b0387/27/d?primer=7cdcb44be4a7db8877ffa5c0007b8dd865b3bbc383831fe2ea177f62257a9191&fvd=n3&v=3) format("woff"),url(https://use.typekit.net/af/ed2fe5/00000000000000003b9b0387/27/a?primer=7cdcb44be4a7db8877ffa5c0007b8dd865b3bbc383831fe2ea177f62257a9191&fvd=n3&v=3) format("opentype");font-weight:300;font-style:normal;}@font-face{font-family:proxima-nova;src:url(https://use.typekit.net/af/77eeb5/00000000000000003b9b038b/27/l?primer=7cdcb44be4a7db8877ffa5c0007b8dd865b3bbc383831fe2ea177f62257a9191&fvd=n5&v=3) format("woff2"),url(https://use.typekit.net/af/77eeb5/00000000000000003b9b038b/27/d?primer=7cdcb44be4a7db8877ffa5c0007b8dd865b3bbc383831fe2ea177f62257a9191&fvd=n5&v=3) format("woff"),url(https://use.typekit.net/af/77eeb5/00000000000000003b9b038b/27/a?primer=7cdcb44be4a7db8877ffa5c0007b8dd865b3bbc383831fe2ea177f62257a9191&fvd=n5&v=3) format("opentype");font-weight:500;font-style:normal;}
window.dataLayer = window.dataLayer || []; function gtag(){ window.dataLayer.push({ 'gtm.blacklist': ['html', 'script'] }); dataLayer.push(arguments);} gtag('js', new Date()); gtag('config', 'G-BJ21064R4F'); gtag('config', 'AW-16651756611');
@font-face { font-family: 'WistiaPlayerInterNumbersSemiBold'; font-feature-settings: 'tnum' 1; src: url(data:application/x-font-woff;charset=utf-8;base64,d09GMk9UVE8AAAaMAAwAAAAACgAAAAZBAAMD1wAAAAAAAAAAAAAAAAAAAAAAAAAADYpwGhQbIBwqBmAAgTIBNgIkAzAEBgWDGgcgGykJEZWkARP8KHCbm2tEznyIN98tPTUk9Ig3oiVV3pbDIzXa+f/fZgXpALFTZhBoMVFC9cp036dXvRKVmVnsxe+D+1NDQI5lG7ikZWEINIElTeBIdnxlhauQ5GQtoLHA/wN0riVdSx5xgbxF3KTbgnjVQ4B9P7YqCx7FpEZK+6ilx0AoopUh4aExJEKmkU+0ncdr4iFfKhdSFD9y91LCRaxNbVqvi0dND3rxI7ndUDR7EiwT3bhiua9krFA0oepCy2hCjwmjnjDjKjNTDz2ZuHtN8820Wfw/l8u4w4yV/f8/6uscs5rmiN00LcP4hAofyZUSyS3WinX0RGFFtnGrjj36x6dlNa57+PLTlrUisH2n9orfgd+R34XfDd0NsWDXwfwhvKHpbs3UBni37dBlPvO4KYn/PgylilcgSdw6sjsSSxsRGfIJgqhi14bKZCHcQvjUh/+3HMotTYrGLVYCxyMFjEnYC98yTAp6atAKVxaZ9eu2NMji8WTj4w/Y34elD60PPwb5bEywLqAX/amwmUo6TBCy14N/TL44jb3sE5JdUIPXXI0RBSoGt3BUObn4agKGIxxQhlyQacbstK4fS2mZoBtFNQ1bd+4zND2vQu6anl7gWFOj8MV2DVMtU44xMhpwElrrjA7zO5IqWojd/v1Vso6cqp91zC2YrGhDOy07Iqyza2q9smDIwUYek0AWbCt/8x78QmrzayQ6xtpmqfCYsLfgU9HdeP3UqutZTTNd/9Q8k08XzXzIxSdvLPda8YaeeZnkxUwql0nDKyUYdaWZjGAy7UDLHpVqBVHTxSV0wBy21El9u/491ik2J3YkdiP2LPZL41RBeeNUWtp97Bbn0Ee1g9wr9qqV/X+4R9nlPX03743dylnaXZyNp8v58yLOsFYCbUnCVQzjN+5QhlmKccO7aMkueWJggROd4qnw2x5LydUcg/NRamE3XMlkGovpRWPKWEavP74P2O1RANM/3gIIPJj7TX+lqU2geQuaBx4B/7cWAOx0ucTiEHYJU9y5DBuUMYNIHeHZz9tn+Fw2G5EBTqUlHRfRi4eB5wNlJsRsv5k4b6HyFkhIC6BO4LzPbWhW7rbCcxubeKHOc6UaBKZBMMd4j8XuRUynOCCa4EMfF9grkI1NcTaSAVtk1nrIOwFfeEBlQw4f4phb6zHzBOm0ZZ0dBcaZRVdYIo5xYiyOMEWONwQHmjKGE//VuRBgul1QrpyxmMvF4vGj0xfuuQrNt4tVTsRhEnjY9AuKa1FVLSEneQWzFd5WbO7hasX08ONUOVQgwQuVqACFXkSoIoUgK1hJEkAgbkG5CjqBS5wrRFuY2IfVwhRnLsVyZTZpatveGR4yEbYqbE6J80nM4aa+LD7Oqmr8PdSJFUQVynmgN4lerGQV1+uLdYzdOFWHPW/iK2gIQayhizQ0NMwyvBEBlrDczRfmU40CTtAHqLQGnjQG8MYkxm1MwJuTqjHwVCu9iRJ1C8ojWGHxUYowH0c5X57zpXquvlw0wzHHGMTfufxiJ1psFJTzq6nGeDvHF4LgmHHWCUViZBaInRn+cswnBi460RBPRYg9TRUQ0CZUC5LAT0qLLu50FpdTeBhjGf7/h4dg9hE0uqsBx/saOcYRDIfnOhfzGFBHyizcJK3p2edUjWrC0rn1aGjXtfVUCHMAKKhlxV8eTEIcV2jCOdKiqahv/MisrfRQVnxPJoOU62mR6pu2ZllIzo8zOZqQB7kWJXW2/c0aihata5PcIVJKfFRgHAETmEQVTCELptGMGcyigTnMJ1voUVN6uCZS9pV2hrwl7FYMvBwtUSd7L7E5qP9t7BIPRF7EcmA9ct2nIPHrxgWajtDltbXuBLuaY6qRZGa5ZlX5anfR0lYXaHUzVSFjZa8rfdhZ8rKXFZg21LVL5LFjI5TlDIbwnFGHE2dypHs6Q50N015dpOgLONEUlOqoiQgIaeCsjMq9gITDKwRMieQgKUy9UQY1BTFYZU2KpE2SkILMIjW8IdFwIKmMaK8oClJVssAEtFnz5dQ1s+w6EZoNGtPGQfzx+aoE8ikiP8GCYOWtgB+HBdWDaxACAZInVq14dZI85RRDvZGIghyONw59KV/BBEQ02P1ER8hmNGiURT2hQP8WfAY=); }
{ "@context": "https://schema.org", "@graph": [ { "@type": "WebSite", "@id": "http://careers.point72.com/#website", "url": "http://careers.point72.com/", "name": "Point72", "description": "", "potentialAction": [ { "@type": "SearchAction", "target": { "@type": "EntryPoint", "urlTemplate": "http://careers.point72.com/?s={search_term_string}" }, "query-input": "required name=search_term_string" } ], "inLanguage": "en-US" }, { "@type": [ "WebPage", "CollectionPage" ], "@id": "http://careers.point72.com/Careers/#webpage", "url": "http://careers.point72.com/Careers/", "name": "Careers - Point72", "isPartOf": { "@id": "http://careers.point72.com/#website" }, "datePublished": "2021-10-05T17:17:37+00:00", "dateModified": "2022-04-11T12:58:22+00:00", "breadcrumb": { "@id": "http://careers.point72.com/Careers/#breadcrumb" }, "inLanguage": "en-US", "potentialAction": [ { "@type": "ReadAction", "target": [ "http://careers.point72.com/Careers/" ] } ] }, { "@type": "BreadcrumbList", "@id": "http://careers.point72.com/Careers/#breadcrumb", "itemListElement": [ { "@type": "ListItem", "position": 1, "name": "Home", "item": "http://careers.point72.com/" }, { "@type": "ListItem", "position": 2, "name": "Careers" } ] } ] }
img.wp-smiley, img.emoji { display: inline !important; border: none !important; box-shadow: none !important; height: 1em !important; width: 1em !important; margin: 0 0.07em !important; vertical-align: -0.1em !important; background: none !important; padding: 0 !important; } body{--wp--preset--color--black: #000000;--wp--preset--color--cyan-bluish-gray: #abb8c3;--wp--preset--color--white: #ffffff;--wp--preset--color--pale-pink: #f78da7;--wp--preset--color--vivid-red: #cf2e2e;--wp--preset--color--luminous-vivid-orange: #ff6900;--wp--preset--color--luminous-vivid-amber: #fcb900;--wp--preset--color--light-green-cyan: #7bdcb5;--wp--preset--color--vivid-green-cyan: #00d084;--wp--preset--color--pale-cyan-blue: #8ed1fc;--wp--preset--color--vivid-cyan-blue: #0693e3;--wp--preset--color--vivid-purple: #9b51e0;--wp--preset--gradient--vivid-cyan-blue-to-vivid-purple: linear-gradient(135deg,rgba(6,147,227,1) 0%,rgb(155,81,224) 100%);--wp--preset--gradient--light-green-cyan-to-vivid-green-cyan: linear-gradient(135deg,rgb(122,220,180) 0%,rgb(0,208,130) 100%);--wp--preset--gradient--luminous-vivid-amber-to-luminous-vivid-orange: linear-gradient(135deg,rgba(252,185,0,1) 0%,rgba(255,105,0,1) 100%);--wp--preset--gradient--luminous-vivid-orange-to-vivid-red: linear-gradient(135deg,rgba(255,105,0,1) 0%,rgb(207,46,46) 100%);--wp--preset--gradient--very-light-gray-to-cyan-bluish-gray: linear-gradient(135deg,rgb(238,238,238) 0%,rgb(169,184,195) 100%);--wp--preset--gradient--cool-to-warm-spectrum: linear-gradient(135deg,rgb(74,234,220) 0%,rgb(151,120,209) 20%,rgb(207,42,186) 40%,rgb(238,44,130) 60%,rgb(251,105,98) 80%,rgb(254,248,76) 100%);--wp--preset--gradient--blush-light-purple: linear-gradient(135deg,rgb(255,206,236) 0%,rgb(152,150,240) 100%);--wp--preset--gradient--blush-bordeaux: linear-gradient(135deg,rgb(254,205,165) 0%,rgb(254,45,45) 50%,rgb(107,0,62) 100%);--wp--preset--gradient--luminous-dusk: linear-gradient(135deg,rgb(255,203,112) 0%,rgb(199,81,192) 50%,rgb(65,88,208) 100%);--wp--preset--gradient--pale-ocean: linear-gradient(135deg,rgb(255,245,203) 0%,rgb(182,227,212) 50%,rgb(51,167,181) 100%);--wp--preset--gradient--electric-grass: linear-gradient(135deg,rgb(202,248,128) 0%,rgb(113,206,126) 100%);--wp--preset--gradient--midnight: linear-gradient(135deg,rgb(2,3,129) 0%,rgb(40,116,252) 100%);--wp--preset--duotone--dark-grayscale: url('#wp-duotone-dark-grayscale');--wp--preset--duotone--grayscale: url('#wp-duotone-grayscale');--wp--preset--duotone--purple-yellow: url('#wp-duotone-purple-yellow');--wp--preset--duotone--blue-red: url('#wp-duotone-blue-red');--wp--preset--duotone--midnight: url('#wp-duotone-midnight');--wp--preset--duotone--magenta-yellow: url('#wp-duotone-magenta-yellow');--wp--preset--duotone--purple-green: url('#wp-duotone-purple-green');--wp--preset--duotone--blue-orange: url('#wp-duotone-blue-orange');--wp--preset--font-size--small: 13px;--wp--preset--font-size--medium: 20px;--wp--preset--font-size--large: 36px;--wp--preset--font-size--x-large: 42px;}.has-black-color{color: var(--wp--preset--color--black) !important;}.has-cyan-bluish-gray-color{color: var(--wp--preset--color--cyan-bluish-gray) !important;}.has-white-color{color: var(--wp--preset--color--white) !important;}.has-pale-pink-color{color: var(--wp--preset--color--pale-pink) !important;}.has-vivid-red-color{color: var(--wp--preset--color--vivid-red) !important;}.has-luminous-vivid-orange-color{color: var(--wp--preset--color--luminous-vivid-orange) !important;}.has-luminous-vivid-amber-color{color: var(--wp--preset--color--luminous-vivid-amber) !important;}.has-light-green-cyan-color{color: var(--wp--preset--color--light-green-cyan) !important;}.has-vivid-green-cyan-color{color: var(--wp--preset--color--vivid-green-cyan) !important;}.has-pale-cyan-blue-color{color: var(--wp--preset--color--pale-cyan-blue) !important;}.has-vivid-cyan-blue-color{color: var(--wp--preset--color--vivid-cyan-blue) !important;}.has-vivid-purple-color{color: var(--wp--preset--color--vivid-purple) !important;}.has-black-background-color{background-color: var(--wp--preset--color--black) !important;}.has-cyan-bluish-gray-background-color{background-color: var(--wp--preset--color--cyan-bluish-gray) !important;}.has-white-background-color{background-color: var(--wp--preset--color--white) !important;}.has-pale-pink-background-color{background-color: var(--wp--preset--color--pale-pink) !important;}.has-vivid-red-background-color{background-color: var(--wp--preset--color--vivid-red) !important;}.has-luminous-vivid-orange-background-color{background-color: var(--wp--preset--color--luminous-vivid-orange) !important;}.has-luminous-vivid-amber-background-color{background-color: var(--wp--preset--color--luminous-vivid-amber) !important;}.has-light-green-cyan-background-color{background-color: var(--wp--preset--color--light-green-cyan) !important;}.has-vivid-green-cyan-background-color{background-color: var(--wp--preset--color--vivid-green-cyan) !important;}.has-pale-cyan-blue-background-color{background-color: var(--wp--preset--color--pale-cyan-blue) !important;}.has-vivid-cyan-blue-background-color{background-color: var(--wp--preset--color--vivid-cyan-blue) !important;}.has-vivid-purple-background-color{background-color: var(--wp--preset--color--vivid-purple) !important;}.has-black-border-color{border-color: var(--wp--preset--color--black) !important;}.has-cyan-bluish-gray-border-color{border-color: var(--wp--preset--color--cyan-bluish-gray) !important;}.has-white-border-color{border-color: var(--wp--preset--color--white) !important;}.has-pale-pink-border-color{border-color: var(--wp--preset--color--pale-pink) !important;}.has-vivid-red-border-color{border-color: var(--wp--preset--color--vivid-red) !important;}.has-luminous-vivid-orange-border-color{border-color: var(--wp--preset--color--luminous-vivid-orange) !important;}.has-luminous-vivid-amber-border-color{border-color: var(--wp--preset--color--luminous-vivid-amber) !important;}.has-light-green-cyan-border-color{border-color: var(--wp--preset--color--light-green-cyan) !important;}.has-vivid-green-cyan-border-color{border-color: var(--wp--preset--color--vivid-green-cyan) !important;}.has-pale-cyan-blue-border-color{border-color: var(--wp--preset--color--pale-cyan-blue) !important;}.has-vivid-cyan-blue-border-color{border-color: var(--wp--preset--color--vivid-cyan-blue) !important;}.has-vivid-purple-border-color{border-color: var(--wp--preset--color--vivid-purple) !important;}.has-vivid-cyan-blue-to-vivid-purple-gradient-background{background: var(--wp--preset--gradient--vivid-cyan-blue-to-vivid-purple) !important;}.has-light-green-cyan-to-vivid-green-cyan-gradient-background{background: var(--wp--preset--gradient--light-green-cyan-to-vivid-green-cyan) !important;}.has-luminous-vivid-amber-to-luminous-vivid-orange-gradient-background{background: var(--wp--preset--gradient--luminous-vivid-amber-to-luminous-vivid-orange) !important;}.has-luminous-vivid-orange-to-vivid-red-gradient-background{background: var(--wp--preset--gradient--luminous-vivid-orange-to-vivid-red) !important;}.has-very-light-gray-to-cyan-bluish-gray-gradient-background{background: var(--wp--preset--gradient--very-light-gray-to-cyan-bluish-gray) !important;}.has-cool-to-warm-spectrum-gradient-background{background: var(--wp--preset--gradient--cool-to-warm-spectrum) !important;}.has-blush-light-purple-gradient-background{background: var(--wp--preset--gradient--blush-light-purple) !important;}.has-blush-bordeaux-gradient-background{background: var(--wp--preset--gradient--blush-bordeaux) !important;}.has-luminous-dusk-gradient-background{background: var(--wp--preset--gradient--luminous-dusk) !important;}.has-pale-ocean-gradient-background{background: var(--wp--preset--gradient--pale-ocean) !important;}.has-electric-grass-gradient-background{background: var(--wp--preset--gradient--electric-grass) !important;}.has-midnight-gradient-background{background: var(--wp--preset--gradient--midnight) !important;}.has-small-font-size{font-size: var(--wp--preset--font-size--small) !important;}.has-medium-font-size{font-size: var(--wp--preset--font-size--medium) !important;}.has-large-font-size{font-size: var(--wp--preset--font-size--large) !important;}.has-x-large-font-size{font-size: var(--wp--preset--font-size--x-large) !important;} try { Typekit.load({ async: true }); } catch (e) {}
Quantitative Researcher - Machine Learning Career
(function(w,d,s,l,i){w[l]=w[l]||[];w[l].push({'gtm.start': new Date().getTime(),event:'gtm.js'});var f=d.getElementsByTagName(s)[0], j=d.createElement(s),dl=l!='dataLayer'?'&l='+l:'';j.async=true;j.src= 'https://www.googletagmanager.com/gtm.js?id='+i+dl;f.parentNode.insertBefore(j,f); })(window,document,'script','dataLayer','GTM-PG5H5G'); _linkedin_partner_id = "592849"; window._linkedin_data_partner_ids = window._linkedin_data_partner_ids || []; window._linkedin_data_partner_ids.push(_linkedin_partner_id); try{ function getQueryParam(url, param) { // Expects a raw URL param = param.replace(/[[]/, "\[").replace(/[]]/, "\]"); var regexS = "[\?&]" + param + "=([^&#]*)", regex = new RegExp( regexS ), results = regex.exec(url); if (results === null || (results && typeof(results[1]) !== 'string' && results[1].length)) { return ''; } else { return decodeURIComponent(results[1]).replace(/\W/gi, ' '); } }; function campaignParams() { var campaign_keywords = 'utm_source utm_medium utm_campaign utm_content utm_term'.split(' ') , kw = '' , params = {} , first_params = {}; var index; for (index = 0; index < campaign_keywords.length; ++index) { kw = getQueryParam(document.URL, campaign_keywords[index]); if (kw.length) { params[campaign_keywords[index] + ' [last touch]'] = kw; } } for (index = 0; index < campaign_keywords.length; ++index) { kw = getQueryParam(document.URL, campaign_keywords[index]); if (kw.length) { first_params[campaign_keywords[index] + ' [first touch]'] = kw; } } mixpanel.people.set(params); mixpanel.people.set_once(first_params); mixpanel.register(params); } campaignParams(); } catch (e) {}
if(!window.sfdcPage) { window.sfdcPage = new ApexPage(); }UserContext.initialize({"ampm":["午前","午後"],"isAccessibleMode":false,"salesforceURL":"https://careers.point72.com?refURL=http%3A%2F%2Fcareers.point72.com%2FCSJobDetail","dateFormat":"yyyy/MM/dd","dayPeriods":[],"language":"ja","locale":"ja","enableLoggingInAuraAlohaFrameNavigator":true,"dateTimeFormat":"yyyy/MM/dd H:mm","labelLastModified":"1768677912000","today":"2026/01/19 4:30","userPreferences":[{"index":112,"name":"HideInlineEditSplash","value":false},{"index":114,"name":"OverrideTaskSendNotification","value":false},{"index":115,"name":"DefaultTaskSendNotification","value":false},{"index":119,"name":"HideUserLayoutStdFieldInfo","value":false},{"index":116,"name":"HideRPPWarning","value":false},{"index":87,"name":"HideInlineSchedulingSplash","value":false},{"index":88,"name":"HideCRUCNotification","value":false},{"index":89,"name":"HideNewPLESplash","value":false},{"index":90,"name":"HideNewPLEWarnIE6","value":false},{"index":122,"name":"HideOverrideSharingMessage","value":false},{"index":91,"name":"HideProfileILEWarn","value":false},{"index":93,"name":"HideProfileElvVideo","value":false},{"index":97,"name":"ShowPicklistEditSplash","value":false},{"index":92,"name":"HideDataCategorySplash","value":false},{"index":128,"name":"ShowDealView","value":false},{"index":129,"name":"HideDealViewGuidedTour","value":false},{"index":132,"name":"HideKnowledgeFirstTimeSetupMsg","value":false},{"index":104,"name":"DefaultOffEntityPermsMsg","value":false},{"index":135,"name":"HideNewCsnSplash","value":false},{"index":101,"name":"HideBrowserWarning","value":false},{"index":139,"name":"HideDashboardBuilderGuidedTour","value":false},{"index":140,"name":"HideSchedulingGuidedTour","value":false},{"index":180,"name":"HideReportBuilderGuidedTour","value":false},{"index":183,"name":"HideAssociationQueueCallout","value":false},{"index":194,"name":"HideQTEBanner","value":false},{"index":270,"name":"HideIDEGuidedTour","value":false},{"index":282,"name":"HideQueryToolGuidedTour","value":false},{"index":196,"name":"HideCSIGuidedTour","value":false},{"index":271,"name":"HideFewmetGuidedTour","value":false},{"index":272,"name":"HideEditorGuidedTour","value":false},{"index":205,"name":"HideApexTestGuidedTour","value":false},{"index":206,"name":"HideSetupProfileHeaderTour","value":false},{"index":207,"name":"HideSetupProfileObjectsAndTabsTour","value":false},{"index":213,"name":"DefaultOffArticleTypeEntityPermMsg","value":false},{"index":214,"name":"HideSelfInfluenceGetStarted","value":false},{"index":215,"name":"HideOtherInfluenceGetStarted","value":false},{"index":216,"name":"HideFeedToggleGuidedTour","value":false},{"index":268,"name":"ShowChatterTab178GuidedTour","value":false},{"index":275,"name":"HidePeopleTabDeprecationMsg","value":false},{"index":276,"name":"HideGroupTabDeprecationMsg","value":false},{"index":224,"name":"HideUnifiedSearchGuidedTour","value":false},{"index":226,"name":"ShowDevContextMenu","value":false},{"index":227,"name":"HideWhatRecommenderForActivityQueues","value":false},{"index":228,"name":"HideLiveAgentFirstTimeSetupMsg","value":false},{"index":232,"name":"HideGroupAllowsGuestsMsgOnMemberWidget","value":false},{"index":233,"name":"HideGroupAllowsGuestsMsg","value":false},{"index":234,"name":"HideWhatAreGuestsMsg","value":false},{"index":235,"name":"HideNowAllowGuestsMsg","value":false},{"index":236,"name":"HideSocialAccountsAndContactsGuidedTour","value":false},{"index":237,"name":"HideAnalyticsHomeGuidedTour","value":false},{"index":238,"name":"ShowQuickCreateGuidedTour","value":false},{"index":245,"name":"HideFilePageGuidedTour","value":false},{"index":250,"name":"HideForecastingGuidedTour","value":false},{"index":251,"name":"HideBucketFieldGuide","value":false},{"index":263,"name":"HideSmartSearchCallOut","value":false},{"index":273,"name":"ShowForecastingQuotaAttainment","value":false},{"index":280,"name":"HideForecastingQuotaColumn","value":false},{"index":301,"name":"HideManyWhoGuidedTour","value":false},{"index":298,"name":"HideFileSyncBannerMsg","value":false},{"index":299,"name":"HideTestConsoleGuidedTour","value":false},{"index":302,"name":"HideManyWhoInlineEditTip","value":false},{"index":303,"name":"HideSetupV2WelcomeMessage","value":false},{"index":312,"name":"ForecastingShowQuantity","value":false},{"index":313,"name":"HideDataImporterIntroMsg","value":false},{"index":314,"name":"HideEnvironmentHubLightbox","value":false},{"index":316,"name":"HideSetupV2GuidedTour","value":false},{"index":317,"name":"HideFileSyncMobileDownloadDialog","value":false},{"index":322,"name":"HideEnhancedProfileHelpBubble","value":false},{"index":328,"name":"ForecastingHideZeroRows","value":false},{"index":330,"name":"HideEmbeddedComponentsFeatureCallout","value":false},{"index":341,"name":"HideDedupeMatchResultCallout","value":false},{"index":340,"name":"HideS1BrowserUI","value":false},{"index":346,"name":"HideS1Banner","value":false},{"index":358,"name":"HideEmailVerificationAlert","value":false},{"index":354,"name":"HideLearningPathModal","value":false},{"index":359,"name":"HideAtMentionsHelpBubble","value":false},{"index":368,"name":"LightningExperiencePreferred","value":false},{"index":373,"name":"PreviewLightning","value":false},{"index":281,"name":"HideMSPPopup","value":false}],"networkId":"","uiTheme":"Theme3","uiSkin":"Theme3","userName":"careers@firmcrm.force.com","userId":"0050a00000GZWwo","isCurrentlySysAdminSU":false,"renderMode":"RETRO","startOfWeek":"1","vfDomainPattern":"point72--(?:[^.]+).vf.force.com","auraDomain":"point72.lightning.force.com","useNativeAlertConfirmPrompt":false,"orgPreferences":[{"index":257,"name":"TabOrganizer","value":true},{"index":113,"name":"GroupTasks","value":true}],"isDefaultNetwork":true,"timeFormat":"H:mm"});
P72 Careers - Header
.c-menu-mobile__menu-item > a, .c-menu-mobile__menu-item > a span { color: #18181a; /* matches your current inline color */ } .c-menu-mobile__button:hover { background: #f5f4ee !important; border-color: #18181a !important; color: #18181a !important; } .c-menu-mega-careers ul a:focus, .c-menu-mega-careers ul a:hover { color: #b08725 !important; color: var(--p72-color-content-stronger) !important; } li.c-menu-mobile__menu-item > a.c-menu-mobile__link, li.c-menu-mobile__menu-item > a.c-menu-mobile__link span { color: #18181a !important; } li.c-menu-mobile__menu-item > a.c-menu-mobile__link:hover, li.c-menu-mobile__menu-item > a.c-menu-mobile__link:hover span { color: var(--p72-color-content-stronger, #b08725) !important; } li.c-menu-mobile__menu-item > a.c-menu-mobile__link, li.c-menu-mobile__menu-item > a.c-menu-mobile__link span { color: #18181a !important; } li.o-icon > a.o-icon:hover, li.o-icon > a.o-icon:hover span { color: var(--p72-color-content-stronger, #b08725) !important; } .o-button--outlined { background-color: transparent; color: black; border: 1px solid black; transition: all 0.3s ease; } .o-button--outlined:focus, .o-button--outlined:hover { background-color: var(--p72-color-button-background, #b08725); border-color: var(--p72-color-button-background, #b08725); color: var(--p72-color-button-text, #f5f4ee); } .c-menu-mega { opacity: 0; visibility: hidden; transform: translateY(5px); transition: opacity 0.15s ease-out, transform 0.15s ease-out; will-change: opacity, transform; } /* Show when active */ .c-menu-mega.is-active, .c-menu-mega[aria-expanded='true'] { opacity: 1; visibility: visible; transform: translateY(0); pointer-events: auto; } @media (max-width: 767px) { .c-header, .c-header.l-wrap, .c-header .l-wrap { width: 100% !important; max-width: 100% !important; } } @media (min-width: 701px) { } .u-spacing { margin: 0px; }
What We Do
Learn about the strategies and asset classes that make up our global business.
Our Values
See how we support our people, communities, and the planet through our ESG efforts.
Leadership
Meet the team responsible for shaping our firm.
Locations
Find us in financial hubs across the globe as we pursue the world’s best talent.
if (window.innerWidth > 768) { document.write(` /* rules */ <\/script>`); } /* rules */ !function(){"use strict";var r,n={},e={};function t(r){var o=e[r];if(void 0!==o)return o.exports;var u=e[r]={exports:{}};return n[r].call(u.exports,u,u.exports,t),u.exports}t.m=n,r=[],t.O=function(n,e,o,u){if(!e){var i=1/0;for(s=0;s
=u)&&Object.keys(t.O).every(function(r){return t.O[r](e[a])})?e.splice(a--,1):(f=!1,u0&&r[s-1][2]>u;s--)r[s]=r[s-1];r[s]=[e,o,u]},t.n=function(r){var n=r&&r.__esModule?function(){return r.default}:function(){return r};return t.d(n,{a:n}),n},t.d=function(r,n){for(var e in n)t.o(n,e)&&!t.o(r,e)&&Object.defineProperty(r,e,{enumerable:!0,get:n[e]})},t.o=function(r,n){return Object.prototype.hasOwnProperty.call(r,n)},function(){var r={666:0};t.O.j=function(n){return 0===r[n]};var n=function(n,e){var o,u,i=e[0],f=e[1],a=e[2],c=0;if(i.some(function(n){return 0!==r[n]})){for(o in f)t.o(f,o)&&(t.m[o]=f[o]);if(a)var s=a(t)}for(n&&n(e);c

Quantitative Researcher - Machine Learning

Apply Now
Experience

Early Career

Location

New York

Focus

Systematic Investing

Business

Cubist

About Cubist

Cubist Systematic Strategies, an affiliate of Point72, deploys systematic, computer-driven trading strategies across multiple liquid asset classes, including equities, futures and foreign exchange. The core of our effort is rigorous research into a wide range of market anomalies, fueled by our unparalleled access to a wide range of publicly available data sources.


Role/Responsibilities:

We are seeking a quantitative researcher for the Cubist Machine Learning Research group with experience in machine learning, especially recent deep learning and natural language processing technology.


Researchers will use a rigorous scientific method to develop sophisticated trading models and shape our insights into how the markets will behave. Successful researchers manage all aspects of the research process including data ingestion and processing, data analysis, methodology selection, implementation and testing, prototyping, and performance evaluation.


Researchers will be introduced to industry standard datasets, including understanding which data may be relevant to a certain model or financial problem; how to collect, parse, and clean the data; how to incorporate the data into innovative functional models; how to construct and develop features from raw data; and how to estimate effectiveness of such features.


Researchers will also be provided with the opportunity to implement the full breadth of their knowledge and training to actively participate in all stages of research & development of financial models through use of machine learning. Based on experience from working with existing industry-standard models and algorithms, researchers will learn how to construct their own models in order to solve complex financial problems and enhance data prediction capabilities within the financial services industry. 


Requirements:

  • PhD or PhD candidate in machine learning, computer science, statistics, or a related field
  • Experience with sequential modeling and time series forecasting using deep learning
  • Experience with deep neural networks and representation learning
  • Prior experience working in a data driven research environment
  • Experience with translating mathematical models and algorithms into code
  • Proficient in programming languages such as Python and R
  • Experience with machine learning software libraries such as TensorFlow or PyTorch
  • Experience with natural language processing technology a strong plus
  • Excellent analytical skills, with strong attention to detail
  • Interest in applying machine learning to finance
  • Collaborative mindset with strong independent research ability
  • Strong written and verbal communication skills

The annual base salary range for this role is $200,000-$300,000 (USD) , which does not include discretionary bonus compensation or our comprehensive benefits package. Actual compensation offered to the successful candidate may vary from posted hiring range based upon geographic location, work experience, education, and/or skill level, among other things.


Apply Now

Job Application Checklist

  • Résumé
Apply Now

Still Exploring?

Browse Open Roles

P72 Careers - Footer
/* 🔹 Main footer padding control */ @media (min-width: 1921px) { .c-menu-footer__graphic{ margin-bottom: -85px !important; } .c-footer{ padding-top:40px !important; } .c-footer__upper{ /*padding-top:100px;*/ } .c-menu-footer__menu{ padding-top:20px !important; } .c-footer__branding{ margin-bottom:0px !important; } .c-menu-footer__link{ line-height:1.3 !important; font-size:1.127rem !important; } .c-menu-footer__title{ line-height:1.4 !important; } } @media (max-width: 1920px) { .c-menu-footer__graphic{ margin-bottom: -65px !important; } .c-menu-footer__title{ line-height:1.4 !important; } .c-menu-footer__link{ line-height:1.3 !important; font-size:1.127rem !important; } .c-menu-footer__menu{ padding-top:20px; } .c-footer__branding{ margin-bottom:0px !important; } } .c-menu-footer__title{ color:#f5f4ee; } @media (max-width: 1024px) { .c-footer__graphic { display: none; } } @media (max-width: 768px) { .c-footer{ padding-top:25px; } .c-footer__upper{ margin-bottom:-20px; } .c-footer__branding{ margin-top:20px; } .c-menu-utility__menu-item { padding-top:3px; } } @media (min-width: 769px) { .c-menu-utility__menu-item { padding-top:0; } } // Mixpanel ignore tracking for known IPs var excludeIPS = '[65.213.72.30, 185.142.16.9, 203.176.115.9, 208.68.197.6, 208.68.197.9, 208.68.199.6, 208.68.199.9, 208.85.160.9, 208.85.161.9]'; $.getJSON('//api.ipify.org?format=json', function(data) { try{ if(true && excludeIPS.indexOf(data.ip) > -1){ console.log('Mixpanel ignore events set: NO events tracked.'); mixpanel.register({"$ignore":true}); }else{ mixpanel.unregister("$ignore"); mixpanel.track("View Page", { "Page Name": document.querySelector('.dotted-underline') ? document.querySelector('.dotted-underline').innerText : location.href, "Careers Site": true }); mixpanel.people.set_once({ 'First Career Page Visit' : new Date().toISOString() }); mixpanel.people.set({ 'Last Career Page Visit' : new Date().toISOString() }); // Only for Careers Site mixpanel.people.increment("# of Career Page Visits"); (function(){ var links = document.querySelectorAll('a'); [].forEach.call(links, function(link) { link.addEventListener("click", function (e) { mixpanel.track("Click Link", { "Link Name": link.text, "Link Location": link.getAttribute('link-location') == null ? 'Body' : link.getAttribute('link-location'), "Link Type": link.getAttribute('link-type') == null ? '' : link.getAttribute('link-type'), "Link Destination URL" : link.href }); }); }); })(); } }catch(e){} }); jQuery(document).ready(function(){ var str = navigator.userAgent; if (str.toLowerCase().indexOf("firefox") >= 0) { jQuery('body').addClass("gecko"); } }); {"employmentType":"FULL_TIME","identifier":{"name":"Cubist Systematic Strategies, LLC","@type":"PropertyValue"},"jobLocation":[{"address":{"addressCountry":"US","addressRegion":"New York","addressLocality":"New York","@type":"PostalAddress"},"@type":"Place"}],"hiringOrganization":{"sameAs":"https://www.point72.com/","name":"Cubist","@type":"Organization"},"datePosted":"2026-01-19","description":"

About Cubist

\n

Cubist Systematic Strategies, an affiliate of Point72, deploys systematic, computer-driven trading strategies across multiple liquid asset classes, including equities, futures and foreign exchange. The core of our effort is rigorous research into a wide range of market anomalies, fueled by our unparalleled access to a wide range of publicly available data sources.


Role/Responsibilities:

\n

We are seeking a quantitative researcher for the Cubist Machine Learning Research group with experience in machine learning, especially recent deep learning and natural language processing technology.


Researchers will use a rigorous scientific method to develop sophisticated trading models and shape our insights into how the markets will behave. Successful researchers manage all aspects of the research process including data ingestion and processing, data analysis, methodology selection, implementation and testing, prototyping, and performance evaluation.


Researchers will be introduced to industry standard datasets, including understanding which data may be relevant to a certain model or financial problem; how to collect, parse, and clean the data; how to incorporate the data into innovative functional models; how to construct and develop features from raw data; and how to estimate effectiveness of such features.


Researchers will also be provided with the opportunity to implement the full breadth of their knowledge and training to actively participate in all stages of research & development of financial models through use of machine learning. Based on experience from working with existing industry-standard models and algorithms, researchers will learn how to construct their own models in order to solve complex financial problems and enhance data prediction capabilities within the financial services industry.


Requirements:

\n
  • PhD or PhD candidate in machine learning, computer science, statistics, or a related field
  • Experience with sequential modeling and time series forecasting using deep learning
  • Experience with deep neural networks and representation learning
  • Prior experience working in a data driven research environment
  • Experience with translating mathematical models and algorithms into code
  • Proficient in programming languages such as Python and R
  • Experience with machine learning software libraries such as TensorFlow or PyTorch
  • Experience with natural language processing technology a strong plus
  • Excellent analytical skills, with strong attention to detail
  • Interest in applying machine learning to finance
  • Collaborative mindset with strong independent research ability
  • Strong written and verbal communication skills

The annual base salary range for this role is $200,000-$300,000 (USD) , which does not include discretionary bonus compensation or our comprehensive benefits package. Actual compensation offered to the successful candidate may vary from posted hiring range based upon geographic location, work experience, education, and/or skill level, among other things.


","title":"Quantitative Researcher - Machine Learning","@type":"JobPosting","@context":"http://schema.org/"} CSJobDetailModule.init('{\"lastModifiedDateFormatted\":\"2025-12-01\",\"job\":{\"attributes\":{\"type\":\"Job__c\",\"url\":\"/services/data/v65.0/sobjects/Job__c/a03Vo00000Y5g1UIAR\"},\"Id\":\"a03Vo00000Y5g1UIAR\",\"Name\":\"Quantitative Researcher - Machine Learning\",\"Assigned_Internal_Recruiter__c\":\"005j000000EWCJ4AAP\",\"Job_Code__c\":\"CSS-0013280\",\"Experience__c\":\"Early Career\",\"Company__c\":\"001j000000VbgA3AAJ\",\"Posted_Location__c\":\"New York\",\"Area__c\":\"Investing\",\"Team__c\":\"Systematic Investing\",\"Summary__c\":\"We are seeking a quantitative researcher for the Cubist Machine Learning Research group with experience in machine learning.\",\"Job_Description_External__c\":\"\u003Ch3\u003EAbout Cubist\u003C/h3\u003E\\n\u003Cp\u003ECubist Systematic Strategies, an affiliate of Point72, deploys systematic, computer-driven trading strategies across multiple liquid asset classes, including equities, futures and foreign exchange. The core of our effort is rigorous research into a wide range of market anomalies, fueled by our unparalleled access to a wide range of publicly available data sources.\u003C/p\u003E\u003Cbr\u003E\u003Ch3\u003ERole/Responsibilities:\u003C/h3\u003E\\n\u003Cp\u003EWe are seeking a quantitative researcher for the Cubist Machine Learning Research group with experience in machine learning, especially recent deep learning and natural language processing technology.\u003C/p\u003E\u003Cp\u003E\u003Cbr\u003E\u003C/p\u003E\u003Cp\u003EResearchers will use a rigorous scientific method to develop sophisticated trading models and shape our insights into how the markets will behave. Successful researchers manage all aspects of the research process including data ingestion and processing, data analysis, methodology selection, implementation and testing, prototyping, and performance evaluation.\u003C/p\u003E\u003Cp\u003E\u003Cbr\u003E\u003C/p\u003E\u003Cp\u003EResearchers will be introduced to industry standard datasets, including understanding which data may be relevant to a certain model or financial problem; how to collect, parse, and clean the data; how to incorporate the data into innovative functional models; how to construct and develop features from raw data; and how to estimate effectiveness of such features.\u003C/p\u003E\u003Cp\u003E\u003Cbr\u003E\u003C/p\u003E\u003Cp\u003EResearchers will also be provided with the opportunity to implement the full breadth of their knowledge and training to actively participate in all stages of research & development of financial models through use of machine learning. Based on experience from working with existing industry-standard models and algorithms, researchers will learn how to construct their own models in order to solve complex financial problems and enhance data prediction capabilities within the financial services industry. \u003C/p\u003E\u003Cbr\u003E\u003Ch3\u003ERequirements:\u003C/h3\u003E\\n\u003Cul\u003E\u003Cli\u003EPhD or PhD candidate in machine learning, computer science, statistics, or a related field\u003C/li\u003E\u003Cli\u003EExperience with sequential modeling and time series forecasting using deep learning \u003C/li\u003E\u003Cli\u003EExperience with deep neural networks and representation learning \u003C/li\u003E\u003Cli\u003EPrior experience working in a data driven research environment\u003C/li\u003E\u003Cli\u003EExperience with translating mathematical models and algorithms into code\u003C/li\u003E\u003Cli\u003EProficient in programming languages such as Python and R\u003C/li\u003E\u003Cli\u003EExperience with machine learning software libraries such as TensorFlow or PyTorch\u003C/li\u003E\u003Cli\u003EExperience with natural language processing technology a strong plus\u003C/li\u003E\u003Cli\u003EExcellent analytical skills, with strong attention to detail\u003C/li\u003E\u003Cli\u003EInterest in applying machine learning to finance\u003C/li\u003E\u003Cli\u003ECollaborative mindset with strong independent research ability\u003C/li\u003E\u003Cli\u003EStrong written and verbal communication skills\u003C/li\u003E\u003C/ul\u003E\u003Cbr\u003E\u003Cp\u003EThe annual base salary range for this role is $200,000-$300,000 (USD) , which does not include discretionary bonus compensation or our comprehensive benefits package. Actual compensation offered to the successful candidate may vary from posted hiring range based upon geographic location, work experience, education, and/or skill level, among other things.\u003C/p\u003E\u003Cbr\u003E\",\"Japanese_Job_Description_External__c\":\"\u003Cbr\u003E\u003Cbr\u003E\u003Cbr\u003E\",\"Transcript_Optional__c\":false,\"RecordTypeId\":\"012j0000000tcfpAAA\",\"Apply_Now_URL__c\":\"https://grnh.se/cc6a1e5e2us\",\"Type__c\":\"Full Time\",\"LastModifiedDate\":\"2025-12-01T10:41:02.000+0000\",\"Location__c\":\"New York, New York\",\"Company__r\":{\"attributes\":{\"type\":\"Account\",\"url\":\"/services/data/v65.0/sobjects/Account/001j000000VbgA3AAJ\"},\"Business__c\":\"Cubist\",\"Name\":\"Cubist Systematic Strategies, LLC\",\"Id\":\"001j000000VbgA3AAJ\",\"RecordTypeId\":\"012j0000000tIlgAAE\"},\"RecordType\":{\"attributes\":{\"type\":\"RecordType\",\"url\":\"/services/data/v65.0/sobjects/RecordType/012j0000000tcfpAAA\"},\"DeveloperName\":\"Cubist\",\"Name\":\"Cubist\",\"Id\":\"012j0000000tcfpAAA\"}},\"friendlyJobName\":\"quantitative-researcher-machine-learning\",\"formattedTeam\":\"Systematic Investing\",\"formattedLocation\":\"New York\",\"formattedArea\":\"Investing\"}');

Quantitative Researcher - Machine Learning

at Point72

Back to all Data Science / AI / ML jobs
Point72 logo
Hedge Funds

Quantitative Researcher - Machine Learning

at Point72

GraduateNo visa sponsorshipData Science/AI/ML

Posted a day ago

No clicks

Compensation
$200,000 – $300,000 USD

Currency: $ (USD)

City
New York City
Country
United States

We are seeking a quantitative researcher for Cubist's Machine Learning Research group to develop and evaluate machine learning-driven trading models. The role covers the full research lifecycle: data ingestion and processing, feature engineering, prototyping, implementation, testing and performance evaluation, with emphasis on deep learning, sequential/time-series modeling and NLP. Candidates should have (or be pursuing) a PhD, strong programming skills (Python/R) and experience with ML libraries such as TensorFlow or PyTorch. This is an early-career research role applying ML to systematic investing within a collaborative, data-driven environment.

try{ NetworkTracking.init('/_ui/networks/tracking/NetworkTrackingServlet', 'network', '0660a000002nc9j'); }catch(x){}(function(UITheme) { UITheme.getUITheme = function() { return UserContext.uiTheme; }; }(window.UITheme = window.UITheme || {}));
a { a:hover { cursor: pointer; color: var(--color-gold); } } .jdfooterbutton:hover{ background: #f5f4ee !important; border-color: #18181a !important; color: #18181a !important; } @media (max-width: 767px) { .u-card{ margin-top: -200px; } .o-heading--xl.l-container--l{ padding-top:130px; } } @media (min-width: 768px) { .u-card{ margin-top: -100px; } .o-heading--xl.l-container--l{ padding-top:110px; } } .tk-proxima-nova{font-family:"proxima-nova",sans-serif;}@font-face{font-family:tk-proxima-nova-n7;src:url(https://use.typekit.net/af/925423/00000000000000003b9b038f/27/l?primer=7cdcb44be4a7db8877ffa5c0007b8dd865b3bbc383831fe2ea177f62257a9191&fvd=n7&v=3) format("woff2"),url(https://use.typekit.net/af/925423/00000000000000003b9b038f/27/d?primer=7cdcb44be4a7db8877ffa5c0007b8dd865b3bbc383831fe2ea177f62257a9191&fvd=n7&v=3) format("woff"),url(https://use.typekit.net/af/925423/00000000000000003b9b038f/27/a?primer=7cdcb44be4a7db8877ffa5c0007b8dd865b3bbc383831fe2ea177f62257a9191&fvd=n7&v=3) format("opentype");font-weight:700;font-style:normal;}@font-face{font-family:tk-proxima-nova-i7;src:url(https://use.typekit.net/af/cd78b3/00000000000000003b9b038e/27/l?primer=7cdcb44be4a7db8877ffa5c0007b8dd865b3bbc383831fe2ea177f62257a9191&fvd=i7&v=3) format("woff2"),url(https://use.typekit.net/af/cd78b3/00000000000000003b9b038e/27/d?primer=7cdcb44be4a7db8877ffa5c0007b8dd865b3bbc383831fe2ea177f62257a9191&fvd=i7&v=3) format("woff"),url(https://use.typekit.net/af/cd78b3/00000000000000003b9b038e/27/a?primer=7cdcb44be4a7db8877ffa5c0007b8dd865b3bbc383831fe2ea177f62257a9191&fvd=i7&v=3) format("opentype");font-weight:700;font-style:italic;}@font-face{font-family:tk-proxima-nova-n4;src:url(https://use.typekit.net/af/219c30/00000000000000003b9b0389/27/l?primer=7cdcb44be4a7db8877ffa5c0007b8dd865b3bbc383831fe2ea177f62257a9191&fvd=n4&v=3) format("woff2"),url(https://use.typekit.net/af/219c30/00000000000000003b9b0389/27/d?primer=7cdcb44be4a7db8877ffa5c0007b8dd865b3bbc383831fe2ea177f62257a9191&fvd=n4&v=3) format("woff"),url(https://use.typekit.net/af/219c30/00000000000000003b9b0389/27/a?primer=7cdcb44be4a7db8877ffa5c0007b8dd865b3bbc383831fe2ea177f62257a9191&fvd=n4&v=3) format("opentype");font-weight:400;font-style:normal;}@font-face{font-family:tk-proxima-nova-i4;src:url(https://use.typekit.net/af/0de7d4/00000000000000003b9b0388/27/l?primer=7cdcb44be4a7db8877ffa5c0007b8dd865b3bbc383831fe2ea177f62257a9191&fvd=i4&v=3) format("woff2"),url(https://use.typekit.net/af/0de7d4/00000000000000003b9b0388/27/d?primer=7cdcb44be4a7db8877ffa5c0007b8dd865b3bbc383831fe2ea177f62257a9191&fvd=i4&v=3) format("woff"),url(https://use.typekit.net/af/0de7d4/00000000000000003b9b0388/27/a?primer=7cdcb44be4a7db8877ffa5c0007b8dd865b3bbc383831fe2ea177f62257a9191&fvd=i4&v=3) format("opentype");font-weight:400;font-style:italic;}@font-face{font-family:tk-proxima-nova-n3;src:url(https://use.typekit.net/af/ed2fe5/00000000000000003b9b0387/27/l?primer=7cdcb44be4a7db8877ffa5c0007b8dd865b3bbc383831fe2ea177f62257a9191&fvd=n3&v=3) format("woff2"),url(https://use.typekit.net/af/ed2fe5/00000000000000003b9b0387/27/d?primer=7cdcb44be4a7db8877ffa5c0007b8dd865b3bbc383831fe2ea177f62257a9191&fvd=n3&v=3) format("woff"),url(https://use.typekit.net/af/ed2fe5/00000000000000003b9b0387/27/a?primer=7cdcb44be4a7db8877ffa5c0007b8dd865b3bbc383831fe2ea177f62257a9191&fvd=n3&v=3) format("opentype");font-weight:300;font-style:normal;}@font-face{font-family:tk-proxima-nova-n5;src:url(https://use.typekit.net/af/77eeb5/00000000000000003b9b038b/27/l?primer=7cdcb44be4a7db8877ffa5c0007b8dd865b3bbc383831fe2ea177f62257a9191&fvd=n5&v=3) format("woff2"),url(https://use.typekit.net/af/77eeb5/00000000000000003b9b038b/27/d?primer=7cdcb44be4a7db8877ffa5c0007b8dd865b3bbc383831fe2ea177f62257a9191&fvd=n5&v=3) format("woff"),url(https://use.typekit.net/af/77eeb5/00000000000000003b9b038b/27/a?primer=7cdcb44be4a7db8877ffa5c0007b8dd865b3bbc383831fe2ea177f62257a9191&fvd=n5&v=3) format("opentype");font-weight:500;font-style:normal;}@font-face{font-family:proxima-nova;src:url(https://use.typekit.net/af/925423/00000000000000003b9b038f/27/l?primer=7cdcb44be4a7db8877ffa5c0007b8dd865b3bbc383831fe2ea177f62257a9191&fvd=n7&v=3) format("woff2"),url(https://use.typekit.net/af/925423/00000000000000003b9b038f/27/d?primer=7cdcb44be4a7db8877ffa5c0007b8dd865b3bbc383831fe2ea177f62257a9191&fvd=n7&v=3) format("woff"),url(https://use.typekit.net/af/925423/00000000000000003b9b038f/27/a?primer=7cdcb44be4a7db8877ffa5c0007b8dd865b3bbc383831fe2ea177f62257a9191&fvd=n7&v=3) format("opentype");font-weight:700;font-style:normal;}@font-face{font-family:proxima-nova;src:url(https://use.typekit.net/af/cd78b3/00000000000000003b9b038e/27/l?primer=7cdcb44be4a7db8877ffa5c0007b8dd865b3bbc383831fe2ea177f62257a9191&fvd=i7&v=3) format("woff2"),url(https://use.typekit.net/af/cd78b3/00000000000000003b9b038e/27/d?primer=7cdcb44be4a7db8877ffa5c0007b8dd865b3bbc383831fe2ea177f62257a9191&fvd=i7&v=3) format("woff"),url(https://use.typekit.net/af/cd78b3/00000000000000003b9b038e/27/a?primer=7cdcb44be4a7db8877ffa5c0007b8dd865b3bbc383831fe2ea177f62257a9191&fvd=i7&v=3) format("opentype");font-weight:700;font-style:italic;}@font-face{font-family:proxima-nova;src:url(https://use.typekit.net/af/219c30/00000000000000003b9b0389/27/l?primer=7cdcb44be4a7db8877ffa5c0007b8dd865b3bbc383831fe2ea177f62257a9191&fvd=n4&v=3) format("woff2"),url(https://use.typekit.net/af/219c30/00000000000000003b9b0389/27/d?primer=7cdcb44be4a7db8877ffa5c0007b8dd865b3bbc383831fe2ea177f62257a9191&fvd=n4&v=3) format("woff"),url(https://use.typekit.net/af/219c30/00000000000000003b9b0389/27/a?primer=7cdcb44be4a7db8877ffa5c0007b8dd865b3bbc383831fe2ea177f62257a9191&fvd=n4&v=3) format("opentype");font-weight:400;font-style:normal;}@font-face{font-family:proxima-nova;src:url(https://use.typekit.net/af/0de7d4/00000000000000003b9b0388/27/l?primer=7cdcb44be4a7db8877ffa5c0007b8dd865b3bbc383831fe2ea177f62257a9191&fvd=i4&v=3) format("woff2"),url(https://use.typekit.net/af/0de7d4/00000000000000003b9b0388/27/d?primer=7cdcb44be4a7db8877ffa5c0007b8dd865b3bbc383831fe2ea177f62257a9191&fvd=i4&v=3) format("woff"),url(https://use.typekit.net/af/0de7d4/00000000000000003b9b0388/27/a?primer=7cdcb44be4a7db8877ffa5c0007b8dd865b3bbc383831fe2ea177f62257a9191&fvd=i4&v=3) format("opentype");font-weight:400;font-style:italic;}@font-face{font-family:proxima-nova;src:url(https://use.typekit.net/af/ed2fe5/00000000000000003b9b0387/27/l?primer=7cdcb44be4a7db8877ffa5c0007b8dd865b3bbc383831fe2ea177f62257a9191&fvd=n3&v=3) format("woff2"),url(https://use.typekit.net/af/ed2fe5/00000000000000003b9b0387/27/d?primer=7cdcb44be4a7db8877ffa5c0007b8dd865b3bbc383831fe2ea177f62257a9191&fvd=n3&v=3) format("woff"),url(https://use.typekit.net/af/ed2fe5/00000000000000003b9b0387/27/a?primer=7cdcb44be4a7db8877ffa5c0007b8dd865b3bbc383831fe2ea177f62257a9191&fvd=n3&v=3) format("opentype");font-weight:300;font-style:normal;}@font-face{font-family:proxima-nova;src:url(https://use.typekit.net/af/77eeb5/00000000000000003b9b038b/27/l?primer=7cdcb44be4a7db8877ffa5c0007b8dd865b3bbc383831fe2ea177f62257a9191&fvd=n5&v=3) format("woff2"),url(https://use.typekit.net/af/77eeb5/00000000000000003b9b038b/27/d?primer=7cdcb44be4a7db8877ffa5c0007b8dd865b3bbc383831fe2ea177f62257a9191&fvd=n5&v=3) format("woff"),url(https://use.typekit.net/af/77eeb5/00000000000000003b9b038b/27/a?primer=7cdcb44be4a7db8877ffa5c0007b8dd865b3bbc383831fe2ea177f62257a9191&fvd=n5&v=3) format("opentype");font-weight:500;font-style:normal;}
window.dataLayer = window.dataLayer || []; function gtag(){ window.dataLayer.push({ 'gtm.blacklist': ['html', 'script'] }); dataLayer.push(arguments);} gtag('js', new Date()); gtag('config', 'G-BJ21064R4F'); gtag('config', 'AW-16651756611');
@font-face { font-family: 'WistiaPlayerInterNumbersSemiBold'; font-feature-settings: 'tnum' 1; src: url(data:application/x-font-woff;charset=utf-8;base64,d09GMk9UVE8AAAaMAAwAAAAACgAAAAZBAAMD1wAAAAAAAAAAAAAAAAAAAAAAAAAADYpwGhQbIBwqBmAAgTIBNgIkAzAEBgWDGgcgGykJEZWkARP8KHCbm2tEznyIN98tPTUk9Ig3oiVV3pbDIzXa+f/fZgXpALFTZhBoMVFC9cp036dXvRKVmVnsxe+D+1NDQI5lG7ikZWEINIElTeBIdnxlhauQ5GQtoLHA/wN0riVdSx5xgbxF3KTbgnjVQ4B9P7YqCx7FpEZK+6ilx0AoopUh4aExJEKmkU+0ncdr4iFfKhdSFD9y91LCRaxNbVqvi0dND3rxI7ndUDR7EiwT3bhiua9krFA0oepCy2hCjwmjnjDjKjNTDz2ZuHtN8820Wfw/l8u4w4yV/f8/6uscs5rmiN00LcP4hAofyZUSyS3WinX0RGFFtnGrjj36x6dlNa57+PLTlrUisH2n9orfgd+R34XfDd0NsWDXwfwhvKHpbs3UBni37dBlPvO4KYn/PgylilcgSdw6sjsSSxsRGfIJgqhi14bKZCHcQvjUh/+3HMotTYrGLVYCxyMFjEnYC98yTAp6atAKVxaZ9eu2NMji8WTj4w/Y34elD60PPwb5bEywLqAX/amwmUo6TBCy14N/TL44jb3sE5JdUIPXXI0RBSoGt3BUObn4agKGIxxQhlyQacbstK4fS2mZoBtFNQ1bd+4zND2vQu6anl7gWFOj8MV2DVMtU44xMhpwElrrjA7zO5IqWojd/v1Vso6cqp91zC2YrGhDOy07Iqyza2q9smDIwUYek0AWbCt/8x78QmrzayQ6xtpmqfCYsLfgU9HdeP3UqutZTTNd/9Q8k08XzXzIxSdvLPda8YaeeZnkxUwql0nDKyUYdaWZjGAy7UDLHpVqBVHTxSV0wBy21El9u/491ik2J3YkdiP2LPZL41RBeeNUWtp97Bbn0Ee1g9wr9qqV/X+4R9nlPX03743dylnaXZyNp8v58yLOsFYCbUnCVQzjN+5QhlmKccO7aMkueWJggROd4qnw2x5LydUcg/NRamE3XMlkGovpRWPKWEavP74P2O1RANM/3gIIPJj7TX+lqU2geQuaBx4B/7cWAOx0ucTiEHYJU9y5DBuUMYNIHeHZz9tn+Fw2G5EBTqUlHRfRi4eB5wNlJsRsv5k4b6HyFkhIC6BO4LzPbWhW7rbCcxubeKHOc6UaBKZBMMd4j8XuRUynOCCa4EMfF9grkI1NcTaSAVtk1nrIOwFfeEBlQw4f4phb6zHzBOm0ZZ0dBcaZRVdYIo5xYiyOMEWONwQHmjKGE//VuRBgul1QrpyxmMvF4vGj0xfuuQrNt4tVTsRhEnjY9AuKa1FVLSEneQWzFd5WbO7hasX08ONUOVQgwQuVqACFXkSoIoUgK1hJEkAgbkG5CjqBS5wrRFuY2IfVwhRnLsVyZTZpatveGR4yEbYqbE6J80nM4aa+LD7Oqmr8PdSJFUQVynmgN4lerGQV1+uLdYzdOFWHPW/iK2gIQayhizQ0NMwyvBEBlrDczRfmU40CTtAHqLQGnjQG8MYkxm1MwJuTqjHwVCu9iRJ1C8ojWGHxUYowH0c5X57zpXquvlw0wzHHGMTfufxiJ1psFJTzq6nGeDvHF4LgmHHWCUViZBaInRn+cswnBi460RBPRYg9TRUQ0CZUC5LAT0qLLu50FpdTeBhjGf7/h4dg9hE0uqsBx/saOcYRDIfnOhfzGFBHyizcJK3p2edUjWrC0rn1aGjXtfVUCHMAKKhlxV8eTEIcV2jCOdKiqahv/MisrfRQVnxPJoOU62mR6pu2ZllIzo8zOZqQB7kWJXW2/c0aihata5PcIVJKfFRgHAETmEQVTCELptGMGcyigTnMJ1voUVN6uCZS9pV2hrwl7FYMvBwtUSd7L7E5qP9t7BIPRF7EcmA9ct2nIPHrxgWajtDltbXuBLuaY6qRZGa5ZlX5anfR0lYXaHUzVSFjZa8rfdhZ8rKXFZg21LVL5LFjI5TlDIbwnFGHE2dypHs6Q50N015dpOgLONEUlOqoiQgIaeCsjMq9gITDKwRMieQgKUy9UQY1BTFYZU2KpE2SkILMIjW8IdFwIKmMaK8oClJVssAEtFnz5dQ1s+w6EZoNGtPGQfzx+aoE8ikiP8GCYOWtgB+HBdWDaxACAZInVq14dZI85RRDvZGIghyONw59KV/BBEQ02P1ER8hmNGiURT2hQP8WfAY=); }
{ "@context": "https://schema.org", "@graph": [ { "@type": "WebSite", "@id": "http://careers.point72.com/#website", "url": "http://careers.point72.com/", "name": "Point72", "description": "", "potentialAction": [ { "@type": "SearchAction", "target": { "@type": "EntryPoint", "urlTemplate": "http://careers.point72.com/?s={search_term_string}" }, "query-input": "required name=search_term_string" } ], "inLanguage": "en-US" }, { "@type": [ "WebPage", "CollectionPage" ], "@id": "http://careers.point72.com/Careers/#webpage", "url": "http://careers.point72.com/Careers/", "name": "Careers - Point72", "isPartOf": { "@id": "http://careers.point72.com/#website" }, "datePublished": "2021-10-05T17:17:37+00:00", "dateModified": "2022-04-11T12:58:22+00:00", "breadcrumb": { "@id": "http://careers.point72.com/Careers/#breadcrumb" }, "inLanguage": "en-US", "potentialAction": [ { "@type": "ReadAction", "target": [ "http://careers.point72.com/Careers/" ] } ] }, { "@type": "BreadcrumbList", "@id": "http://careers.point72.com/Careers/#breadcrumb", "itemListElement": [ { "@type": "ListItem", "position": 1, "name": "Home", "item": "http://careers.point72.com/" }, { "@type": "ListItem", "position": 2, "name": "Careers" } ] } ] }
img.wp-smiley, img.emoji { display: inline !important; border: none !important; box-shadow: none !important; height: 1em !important; width: 1em !important; margin: 0 0.07em !important; vertical-align: -0.1em !important; background: none !important; padding: 0 !important; } body{--wp--preset--color--black: #000000;--wp--preset--color--cyan-bluish-gray: #abb8c3;--wp--preset--color--white: #ffffff;--wp--preset--color--pale-pink: #f78da7;--wp--preset--color--vivid-red: #cf2e2e;--wp--preset--color--luminous-vivid-orange: #ff6900;--wp--preset--color--luminous-vivid-amber: #fcb900;--wp--preset--color--light-green-cyan: #7bdcb5;--wp--preset--color--vivid-green-cyan: #00d084;--wp--preset--color--pale-cyan-blue: #8ed1fc;--wp--preset--color--vivid-cyan-blue: #0693e3;--wp--preset--color--vivid-purple: #9b51e0;--wp--preset--gradient--vivid-cyan-blue-to-vivid-purple: linear-gradient(135deg,rgba(6,147,227,1) 0%,rgb(155,81,224) 100%);--wp--preset--gradient--light-green-cyan-to-vivid-green-cyan: linear-gradient(135deg,rgb(122,220,180) 0%,rgb(0,208,130) 100%);--wp--preset--gradient--luminous-vivid-amber-to-luminous-vivid-orange: linear-gradient(135deg,rgba(252,185,0,1) 0%,rgba(255,105,0,1) 100%);--wp--preset--gradient--luminous-vivid-orange-to-vivid-red: linear-gradient(135deg,rgba(255,105,0,1) 0%,rgb(207,46,46) 100%);--wp--preset--gradient--very-light-gray-to-cyan-bluish-gray: linear-gradient(135deg,rgb(238,238,238) 0%,rgb(169,184,195) 100%);--wp--preset--gradient--cool-to-warm-spectrum: linear-gradient(135deg,rgb(74,234,220) 0%,rgb(151,120,209) 20%,rgb(207,42,186) 40%,rgb(238,44,130) 60%,rgb(251,105,98) 80%,rgb(254,248,76) 100%);--wp--preset--gradient--blush-light-purple: linear-gradient(135deg,rgb(255,206,236) 0%,rgb(152,150,240) 100%);--wp--preset--gradient--blush-bordeaux: linear-gradient(135deg,rgb(254,205,165) 0%,rgb(254,45,45) 50%,rgb(107,0,62) 100%);--wp--preset--gradient--luminous-dusk: linear-gradient(135deg,rgb(255,203,112) 0%,rgb(199,81,192) 50%,rgb(65,88,208) 100%);--wp--preset--gradient--pale-ocean: linear-gradient(135deg,rgb(255,245,203) 0%,rgb(182,227,212) 50%,rgb(51,167,181) 100%);--wp--preset--gradient--electric-grass: linear-gradient(135deg,rgb(202,248,128) 0%,rgb(113,206,126) 100%);--wp--preset--gradient--midnight: linear-gradient(135deg,rgb(2,3,129) 0%,rgb(40,116,252) 100%);--wp--preset--duotone--dark-grayscale: url('#wp-duotone-dark-grayscale');--wp--preset--duotone--grayscale: url('#wp-duotone-grayscale');--wp--preset--duotone--purple-yellow: url('#wp-duotone-purple-yellow');--wp--preset--duotone--blue-red: url('#wp-duotone-blue-red');--wp--preset--duotone--midnight: url('#wp-duotone-midnight');--wp--preset--duotone--magenta-yellow: url('#wp-duotone-magenta-yellow');--wp--preset--duotone--purple-green: url('#wp-duotone-purple-green');--wp--preset--duotone--blue-orange: url('#wp-duotone-blue-orange');--wp--preset--font-size--small: 13px;--wp--preset--font-size--medium: 20px;--wp--preset--font-size--large: 36px;--wp--preset--font-size--x-large: 42px;}.has-black-color{color: var(--wp--preset--color--black) !important;}.has-cyan-bluish-gray-color{color: var(--wp--preset--color--cyan-bluish-gray) !important;}.has-white-color{color: var(--wp--preset--color--white) !important;}.has-pale-pink-color{color: var(--wp--preset--color--pale-pink) !important;}.has-vivid-red-color{color: var(--wp--preset--color--vivid-red) !important;}.has-luminous-vivid-orange-color{color: var(--wp--preset--color--luminous-vivid-orange) !important;}.has-luminous-vivid-amber-color{color: var(--wp--preset--color--luminous-vivid-amber) !important;}.has-light-green-cyan-color{color: var(--wp--preset--color--light-green-cyan) !important;}.has-vivid-green-cyan-color{color: var(--wp--preset--color--vivid-green-cyan) !important;}.has-pale-cyan-blue-color{color: var(--wp--preset--color--pale-cyan-blue) !important;}.has-vivid-cyan-blue-color{color: var(--wp--preset--color--vivid-cyan-blue) !important;}.has-vivid-purple-color{color: var(--wp--preset--color--vivid-purple) !important;}.has-black-background-color{background-color: var(--wp--preset--color--black) !important;}.has-cyan-bluish-gray-background-color{background-color: var(--wp--preset--color--cyan-bluish-gray) !important;}.has-white-background-color{background-color: var(--wp--preset--color--white) !important;}.has-pale-pink-background-color{background-color: var(--wp--preset--color--pale-pink) !important;}.has-vivid-red-background-color{background-color: var(--wp--preset--color--vivid-red) !important;}.has-luminous-vivid-orange-background-color{background-color: var(--wp--preset--color--luminous-vivid-orange) !important;}.has-luminous-vivid-amber-background-color{background-color: var(--wp--preset--color--luminous-vivid-amber) !important;}.has-light-green-cyan-background-color{background-color: var(--wp--preset--color--light-green-cyan) !important;}.has-vivid-green-cyan-background-color{background-color: var(--wp--preset--color--vivid-green-cyan) !important;}.has-pale-cyan-blue-background-color{background-color: var(--wp--preset--color--pale-cyan-blue) !important;}.has-vivid-cyan-blue-background-color{background-color: var(--wp--preset--color--vivid-cyan-blue) !important;}.has-vivid-purple-background-color{background-color: var(--wp--preset--color--vivid-purple) !important;}.has-black-border-color{border-color: var(--wp--preset--color--black) !important;}.has-cyan-bluish-gray-border-color{border-color: var(--wp--preset--color--cyan-bluish-gray) !important;}.has-white-border-color{border-color: var(--wp--preset--color--white) !important;}.has-pale-pink-border-color{border-color: var(--wp--preset--color--pale-pink) !important;}.has-vivid-red-border-color{border-color: var(--wp--preset--color--vivid-red) !important;}.has-luminous-vivid-orange-border-color{border-color: var(--wp--preset--color--luminous-vivid-orange) !important;}.has-luminous-vivid-amber-border-color{border-color: var(--wp--preset--color--luminous-vivid-amber) !important;}.has-light-green-cyan-border-color{border-color: var(--wp--preset--color--light-green-cyan) !important;}.has-vivid-green-cyan-border-color{border-color: var(--wp--preset--color--vivid-green-cyan) !important;}.has-pale-cyan-blue-border-color{border-color: var(--wp--preset--color--pale-cyan-blue) !important;}.has-vivid-cyan-blue-border-color{border-color: var(--wp--preset--color--vivid-cyan-blue) !important;}.has-vivid-purple-border-color{border-color: var(--wp--preset--color--vivid-purple) !important;}.has-vivid-cyan-blue-to-vivid-purple-gradient-background{background: var(--wp--preset--gradient--vivid-cyan-blue-to-vivid-purple) !important;}.has-light-green-cyan-to-vivid-green-cyan-gradient-background{background: var(--wp--preset--gradient--light-green-cyan-to-vivid-green-cyan) !important;}.has-luminous-vivid-amber-to-luminous-vivid-orange-gradient-background{background: var(--wp--preset--gradient--luminous-vivid-amber-to-luminous-vivid-orange) !important;}.has-luminous-vivid-orange-to-vivid-red-gradient-background{background: var(--wp--preset--gradient--luminous-vivid-orange-to-vivid-red) !important;}.has-very-light-gray-to-cyan-bluish-gray-gradient-background{background: var(--wp--preset--gradient--very-light-gray-to-cyan-bluish-gray) !important;}.has-cool-to-warm-spectrum-gradient-background{background: var(--wp--preset--gradient--cool-to-warm-spectrum) !important;}.has-blush-light-purple-gradient-background{background: var(--wp--preset--gradient--blush-light-purple) !important;}.has-blush-bordeaux-gradient-background{background: var(--wp--preset--gradient--blush-bordeaux) !important;}.has-luminous-dusk-gradient-background{background: var(--wp--preset--gradient--luminous-dusk) !important;}.has-pale-ocean-gradient-background{background: var(--wp--preset--gradient--pale-ocean) !important;}.has-electric-grass-gradient-background{background: var(--wp--preset--gradient--electric-grass) !important;}.has-midnight-gradient-background{background: var(--wp--preset--gradient--midnight) !important;}.has-small-font-size{font-size: var(--wp--preset--font-size--small) !important;}.has-medium-font-size{font-size: var(--wp--preset--font-size--medium) !important;}.has-large-font-size{font-size: var(--wp--preset--font-size--large) !important;}.has-x-large-font-size{font-size: var(--wp--preset--font-size--x-large) !important;} try { Typekit.load({ async: true }); } catch (e) {}
Quantitative Researcher - Machine Learning Career
(function(w,d,s,l,i){w[l]=w[l]||[];w[l].push({'gtm.start': new Date().getTime(),event:'gtm.js'});var f=d.getElementsByTagName(s)[0], j=d.createElement(s),dl=l!='dataLayer'?'&l='+l:'';j.async=true;j.src= 'https://www.googletagmanager.com/gtm.js?id='+i+dl;f.parentNode.insertBefore(j,f); })(window,document,'script','dataLayer','GTM-PG5H5G'); _linkedin_partner_id = "592849"; window._linkedin_data_partner_ids = window._linkedin_data_partner_ids || []; window._linkedin_data_partner_ids.push(_linkedin_partner_id); try{ function getQueryParam(url, param) { // Expects a raw URL param = param.replace(/[[]/, "\[").replace(/[]]/, "\]"); var regexS = "[\?&]" + param + "=([^&#]*)", regex = new RegExp( regexS ), results = regex.exec(url); if (results === null || (results && typeof(results[1]) !== 'string' && results[1].length)) { return ''; } else { return decodeURIComponent(results[1]).replace(/\W/gi, ' '); } }; function campaignParams() { var campaign_keywords = 'utm_source utm_medium utm_campaign utm_content utm_term'.split(' ') , kw = '' , params = {} , first_params = {}; var index; for (index = 0; index < campaign_keywords.length; ++index) { kw = getQueryParam(document.URL, campaign_keywords[index]); if (kw.length) { params[campaign_keywords[index] + ' [last touch]'] = kw; } } for (index = 0; index < campaign_keywords.length; ++index) { kw = getQueryParam(document.URL, campaign_keywords[index]); if (kw.length) { first_params[campaign_keywords[index] + ' [first touch]'] = kw; } } mixpanel.people.set(params); mixpanel.people.set_once(first_params); mixpanel.register(params); } campaignParams(); } catch (e) {}
if(!window.sfdcPage) { window.sfdcPage = new ApexPage(); }UserContext.initialize({"ampm":["午前","午後"],"isAccessibleMode":false,"salesforceURL":"https://careers.point72.com?refURL=http%3A%2F%2Fcareers.point72.com%2FCSJobDetail","dateFormat":"yyyy/MM/dd","dayPeriods":[],"language":"ja","locale":"ja","enableLoggingInAuraAlohaFrameNavigator":true,"dateTimeFormat":"yyyy/MM/dd H:mm","labelLastModified":"1768677912000","today":"2026/01/19 4:30","userPreferences":[{"index":112,"name":"HideInlineEditSplash","value":false},{"index":114,"name":"OverrideTaskSendNotification","value":false},{"index":115,"name":"DefaultTaskSendNotification","value":false},{"index":119,"name":"HideUserLayoutStdFieldInfo","value":false},{"index":116,"name":"HideRPPWarning","value":false},{"index":87,"name":"HideInlineSchedulingSplash","value":false},{"index":88,"name":"HideCRUCNotification","value":false},{"index":89,"name":"HideNewPLESplash","value":false},{"index":90,"name":"HideNewPLEWarnIE6","value":false},{"index":122,"name":"HideOverrideSharingMessage","value":false},{"index":91,"name":"HideProfileILEWarn","value":false},{"index":93,"name":"HideProfileElvVideo","value":false},{"index":97,"name":"ShowPicklistEditSplash","value":false},{"index":92,"name":"HideDataCategorySplash","value":false},{"index":128,"name":"ShowDealView","value":false},{"index":129,"name":"HideDealViewGuidedTour","value":false},{"index":132,"name":"HideKnowledgeFirstTimeSetupMsg","value":false},{"index":104,"name":"DefaultOffEntityPermsMsg","value":false},{"index":135,"name":"HideNewCsnSplash","value":false},{"index":101,"name":"HideBrowserWarning","value":false},{"index":139,"name":"HideDashboardBuilderGuidedTour","value":false},{"index":140,"name":"HideSchedulingGuidedTour","value":false},{"index":180,"name":"HideReportBuilderGuidedTour","value":false},{"index":183,"name":"HideAssociationQueueCallout","value":false},{"index":194,"name":"HideQTEBanner","value":false},{"index":270,"name":"HideIDEGuidedTour","value":false},{"index":282,"name":"HideQueryToolGuidedTour","value":false},{"index":196,"name":"HideCSIGuidedTour","value":false},{"index":271,"name":"HideFewmetGuidedTour","value":false},{"index":272,"name":"HideEditorGuidedTour","value":false},{"index":205,"name":"HideApexTestGuidedTour","value":false},{"index":206,"name":"HideSetupProfileHeaderTour","value":false},{"index":207,"name":"HideSetupProfileObjectsAndTabsTour","value":false},{"index":213,"name":"DefaultOffArticleTypeEntityPermMsg","value":false},{"index":214,"name":"HideSelfInfluenceGetStarted","value":false},{"index":215,"name":"HideOtherInfluenceGetStarted","value":false},{"index":216,"name":"HideFeedToggleGuidedTour","value":false},{"index":268,"name":"ShowChatterTab178GuidedTour","value":false},{"index":275,"name":"HidePeopleTabDeprecationMsg","value":false},{"index":276,"name":"HideGroupTabDeprecationMsg","value":false},{"index":224,"name":"HideUnifiedSearchGuidedTour","value":false},{"index":226,"name":"ShowDevContextMenu","value":false},{"index":227,"name":"HideWhatRecommenderForActivityQueues","value":false},{"index":228,"name":"HideLiveAgentFirstTimeSetupMsg","value":false},{"index":232,"name":"HideGroupAllowsGuestsMsgOnMemberWidget","value":false},{"index":233,"name":"HideGroupAllowsGuestsMsg","value":false},{"index":234,"name":"HideWhatAreGuestsMsg","value":false},{"index":235,"name":"HideNowAllowGuestsMsg","value":false},{"index":236,"name":"HideSocialAccountsAndContactsGuidedTour","value":false},{"index":237,"name":"HideAnalyticsHomeGuidedTour","value":false},{"index":238,"name":"ShowQuickCreateGuidedTour","value":false},{"index":245,"name":"HideFilePageGuidedTour","value":false},{"index":250,"name":"HideForecastingGuidedTour","value":false},{"index":251,"name":"HideBucketFieldGuide","value":false},{"index":263,"name":"HideSmartSearchCallOut","value":false},{"index":273,"name":"ShowForecastingQuotaAttainment","value":false},{"index":280,"name":"HideForecastingQuotaColumn","value":false},{"index":301,"name":"HideManyWhoGuidedTour","value":false},{"index":298,"name":"HideFileSyncBannerMsg","value":false},{"index":299,"name":"HideTestConsoleGuidedTour","value":false},{"index":302,"name":"HideManyWhoInlineEditTip","value":false},{"index":303,"name":"HideSetupV2WelcomeMessage","value":false},{"index":312,"name":"ForecastingShowQuantity","value":false},{"index":313,"name":"HideDataImporterIntroMsg","value":false},{"index":314,"name":"HideEnvironmentHubLightbox","value":false},{"index":316,"name":"HideSetupV2GuidedTour","value":false},{"index":317,"name":"HideFileSyncMobileDownloadDialog","value":false},{"index":322,"name":"HideEnhancedProfileHelpBubble","value":false},{"index":328,"name":"ForecastingHideZeroRows","value":false},{"index":330,"name":"HideEmbeddedComponentsFeatureCallout","value":false},{"index":341,"name":"HideDedupeMatchResultCallout","value":false},{"index":340,"name":"HideS1BrowserUI","value":false},{"index":346,"name":"HideS1Banner","value":false},{"index":358,"name":"HideEmailVerificationAlert","value":false},{"index":354,"name":"HideLearningPathModal","value":false},{"index":359,"name":"HideAtMentionsHelpBubble","value":false},{"index":368,"name":"LightningExperiencePreferred","value":false},{"index":373,"name":"PreviewLightning","value":false},{"index":281,"name":"HideMSPPopup","value":false}],"networkId":"","uiTheme":"Theme3","uiSkin":"Theme3","userName":"careers@firmcrm.force.com","userId":"0050a00000GZWwo","isCurrentlySysAdminSU":false,"renderMode":"RETRO","startOfWeek":"1","vfDomainPattern":"point72--(?:[^.]+).vf.force.com","auraDomain":"point72.lightning.force.com","useNativeAlertConfirmPrompt":false,"orgPreferences":[{"index":257,"name":"TabOrganizer","value":true},{"index":113,"name":"GroupTasks","value":true}],"isDefaultNetwork":true,"timeFormat":"H:mm"});
P72 Careers - Header
.c-menu-mobile__menu-item > a, .c-menu-mobile__menu-item > a span { color: #18181a; /* matches your current inline color */ } .c-menu-mobile__button:hover { background: #f5f4ee !important; border-color: #18181a !important; color: #18181a !important; } .c-menu-mega-careers ul a:focus, .c-menu-mega-careers ul a:hover { color: #b08725 !important; color: var(--p72-color-content-stronger) !important; } li.c-menu-mobile__menu-item > a.c-menu-mobile__link, li.c-menu-mobile__menu-item > a.c-menu-mobile__link span { color: #18181a !important; } li.c-menu-mobile__menu-item > a.c-menu-mobile__link:hover, li.c-menu-mobile__menu-item > a.c-menu-mobile__link:hover span { color: var(--p72-color-content-stronger, #b08725) !important; } li.c-menu-mobile__menu-item > a.c-menu-mobile__link, li.c-menu-mobile__menu-item > a.c-menu-mobile__link span { color: #18181a !important; } li.o-icon > a.o-icon:hover, li.o-icon > a.o-icon:hover span { color: var(--p72-color-content-stronger, #b08725) !important; } .o-button--outlined { background-color: transparent; color: black; border: 1px solid black; transition: all 0.3s ease; } .o-button--outlined:focus, .o-button--outlined:hover { background-color: var(--p72-color-button-background, #b08725); border-color: var(--p72-color-button-background, #b08725); color: var(--p72-color-button-text, #f5f4ee); } .c-menu-mega { opacity: 0; visibility: hidden; transform: translateY(5px); transition: opacity 0.15s ease-out, transform 0.15s ease-out; will-change: opacity, transform; } /* Show when active */ .c-menu-mega.is-active, .c-menu-mega[aria-expanded='true'] { opacity: 1; visibility: visible; transform: translateY(0); pointer-events: auto; } @media (max-width: 767px) { .c-header, .c-header.l-wrap, .c-header .l-wrap { width: 100% !important; max-width: 100% !important; } } @media (min-width: 701px) { } .u-spacing { margin: 0px; }
What We Do
Learn about the strategies and asset classes that make up our global business.
Our Values
See how we support our people, communities, and the planet through our ESG efforts.
Leadership
Meet the team responsible for shaping our firm.
Locations
Find us in financial hubs across the globe as we pursue the world’s best talent.
if (window.innerWidth > 768) { document.write(` /* rules */ <\/script>`); } /* rules */ !function(){"use strict";var r,n={},e={};function t(r){var o=e[r];if(void 0!==o)return o.exports;var u=e[r]={exports:{}};return n[r].call(u.exports,u,u.exports,t),u.exports}t.m=n,r=[],t.O=function(n,e,o,u){if(!e){var i=1/0;for(s=0;s
=u)&&Object.keys(t.O).every(function(r){return t.O[r](e[a])})?e.splice(a--,1):(f=!1,u0&&r[s-1][2]>u;s--)r[s]=r[s-1];r[s]=[e,o,u]},t.n=function(r){var n=r&&r.__esModule?function(){return r.default}:function(){return r};return t.d(n,{a:n}),n},t.d=function(r,n){for(var e in n)t.o(n,e)&&!t.o(r,e)&&Object.defineProperty(r,e,{enumerable:!0,get:n[e]})},t.o=function(r,n){return Object.prototype.hasOwnProperty.call(r,n)},function(){var r={666:0};t.O.j=function(n){return 0===r[n]};var n=function(n,e){var o,u,i=e[0],f=e[1],a=e[2],c=0;if(i.some(function(n){return 0!==r[n]})){for(o in f)t.o(f,o)&&(t.m[o]=f[o]);if(a)var s=a(t)}for(n&&n(e);c

Quantitative Researcher - Machine Learning

Apply Now
Experience

Early Career

Location

New York

Focus

Systematic Investing

Business

Cubist

About Cubist

Cubist Systematic Strategies, an affiliate of Point72, deploys systematic, computer-driven trading strategies across multiple liquid asset classes, including equities, futures and foreign exchange. The core of our effort is rigorous research into a wide range of market anomalies, fueled by our unparalleled access to a wide range of publicly available data sources.


Role/Responsibilities:

We are seeking a quantitative researcher for the Cubist Machine Learning Research group with experience in machine learning, especially recent deep learning and natural language processing technology.


Researchers will use a rigorous scientific method to develop sophisticated trading models and shape our insights into how the markets will behave. Successful researchers manage all aspects of the research process including data ingestion and processing, data analysis, methodology selection, implementation and testing, prototyping, and performance evaluation.


Researchers will be introduced to industry standard datasets, including understanding which data may be relevant to a certain model or financial problem; how to collect, parse, and clean the data; how to incorporate the data into innovative functional models; how to construct and develop features from raw data; and how to estimate effectiveness of such features.


Researchers will also be provided with the opportunity to implement the full breadth of their knowledge and training to actively participate in all stages of research & development of financial models through use of machine learning. Based on experience from working with existing industry-standard models and algorithms, researchers will learn how to construct their own models in order to solve complex financial problems and enhance data prediction capabilities within the financial services industry. 


Requirements:

  • PhD or PhD candidate in machine learning, computer science, statistics, or a related field
  • Experience with sequential modeling and time series forecasting using deep learning
  • Experience with deep neural networks and representation learning
  • Prior experience working in a data driven research environment
  • Experience with translating mathematical models and algorithms into code
  • Proficient in programming languages such as Python and R
  • Experience with machine learning software libraries such as TensorFlow or PyTorch
  • Experience with natural language processing technology a strong plus
  • Excellent analytical skills, with strong attention to detail
  • Interest in applying machine learning to finance
  • Collaborative mindset with strong independent research ability
  • Strong written and verbal communication skills

The annual base salary range for this role is $200,000-$300,000 (USD) , which does not include discretionary bonus compensation or our comprehensive benefits package. Actual compensation offered to the successful candidate may vary from posted hiring range based upon geographic location, work experience, education, and/or skill level, among other things.


Apply Now

Job Application Checklist

  • Résumé
Apply Now

Still Exploring?

Browse Open Roles

P72 Careers - Footer
/* 🔹 Main footer padding control */ @media (min-width: 1921px) { .c-menu-footer__graphic{ margin-bottom: -85px !important; } .c-footer{ padding-top:40px !important; } .c-footer__upper{ /*padding-top:100px;*/ } .c-menu-footer__menu{ padding-top:20px !important; } .c-footer__branding{ margin-bottom:0px !important; } .c-menu-footer__link{ line-height:1.3 !important; font-size:1.127rem !important; } .c-menu-footer__title{ line-height:1.4 !important; } } @media (max-width: 1920px) { .c-menu-footer__graphic{ margin-bottom: -65px !important; } .c-menu-footer__title{ line-height:1.4 !important; } .c-menu-footer__link{ line-height:1.3 !important; font-size:1.127rem !important; } .c-menu-footer__menu{ padding-top:20px; } .c-footer__branding{ margin-bottom:0px !important; } } .c-menu-footer__title{ color:#f5f4ee; } @media (max-width: 1024px) { .c-footer__graphic { display: none; } } @media (max-width: 768px) { .c-footer{ padding-top:25px; } .c-footer__upper{ margin-bottom:-20px; } .c-footer__branding{ margin-top:20px; } .c-menu-utility__menu-item { padding-top:3px; } } @media (min-width: 769px) { .c-menu-utility__menu-item { padding-top:0; } } // Mixpanel ignore tracking for known IPs var excludeIPS = '[65.213.72.30, 185.142.16.9, 203.176.115.9, 208.68.197.6, 208.68.197.9, 208.68.199.6, 208.68.199.9, 208.85.160.9, 208.85.161.9]'; $.getJSON('//api.ipify.org?format=json', function(data) { try{ if(true && excludeIPS.indexOf(data.ip) > -1){ console.log('Mixpanel ignore events set: NO events tracked.'); mixpanel.register({"$ignore":true}); }else{ mixpanel.unregister("$ignore"); mixpanel.track("View Page", { "Page Name": document.querySelector('.dotted-underline') ? document.querySelector('.dotted-underline').innerText : location.href, "Careers Site": true }); mixpanel.people.set_once({ 'First Career Page Visit' : new Date().toISOString() }); mixpanel.people.set({ 'Last Career Page Visit' : new Date().toISOString() }); // Only for Careers Site mixpanel.people.increment("# of Career Page Visits"); (function(){ var links = document.querySelectorAll('a'); [].forEach.call(links, function(link) { link.addEventListener("click", function (e) { mixpanel.track("Click Link", { "Link Name": link.text, "Link Location": link.getAttribute('link-location') == null ? 'Body' : link.getAttribute('link-location'), "Link Type": link.getAttribute('link-type') == null ? '' : link.getAttribute('link-type'), "Link Destination URL" : link.href }); }); }); })(); } }catch(e){} }); jQuery(document).ready(function(){ var str = navigator.userAgent; if (str.toLowerCase().indexOf("firefox") >= 0) { jQuery('body').addClass("gecko"); } }); {"employmentType":"FULL_TIME","identifier":{"name":"Cubist Systematic Strategies, LLC","@type":"PropertyValue"},"jobLocation":[{"address":{"addressCountry":"US","addressRegion":"New York","addressLocality":"New York","@type":"PostalAddress"},"@type":"Place"}],"hiringOrganization":{"sameAs":"https://www.point72.com/","name":"Cubist","@type":"Organization"},"datePosted":"2026-01-19","description":"

About Cubist

\n

Cubist Systematic Strategies, an affiliate of Point72, deploys systematic, computer-driven trading strategies across multiple liquid asset classes, including equities, futures and foreign exchange. The core of our effort is rigorous research into a wide range of market anomalies, fueled by our unparalleled access to a wide range of publicly available data sources.


Role/Responsibilities:

\n

We are seeking a quantitative researcher for the Cubist Machine Learning Research group with experience in machine learning, especially recent deep learning and natural language processing technology.


Researchers will use a rigorous scientific method to develop sophisticated trading models and shape our insights into how the markets will behave. Successful researchers manage all aspects of the research process including data ingestion and processing, data analysis, methodology selection, implementation and testing, prototyping, and performance evaluation.


Researchers will be introduced to industry standard datasets, including understanding which data may be relevant to a certain model or financial problem; how to collect, parse, and clean the data; how to incorporate the data into innovative functional models; how to construct and develop features from raw data; and how to estimate effectiveness of such features.


Researchers will also be provided with the opportunity to implement the full breadth of their knowledge and training to actively participate in all stages of research & development of financial models through use of machine learning. Based on experience from working with existing industry-standard models and algorithms, researchers will learn how to construct their own models in order to solve complex financial problems and enhance data prediction capabilities within the financial services industry.


Requirements:

\n
  • PhD or PhD candidate in machine learning, computer science, statistics, or a related field
  • Experience with sequential modeling and time series forecasting using deep learning
  • Experience with deep neural networks and representation learning
  • Prior experience working in a data driven research environment
  • Experience with translating mathematical models and algorithms into code
  • Proficient in programming languages such as Python and R
  • Experience with machine learning software libraries such as TensorFlow or PyTorch
  • Experience with natural language processing technology a strong plus
  • Excellent analytical skills, with strong attention to detail
  • Interest in applying machine learning to finance
  • Collaborative mindset with strong independent research ability
  • Strong written and verbal communication skills

The annual base salary range for this role is $200,000-$300,000 (USD) , which does not include discretionary bonus compensation or our comprehensive benefits package. Actual compensation offered to the successful candidate may vary from posted hiring range based upon geographic location, work experience, education, and/or skill level, among other things.


","title":"Quantitative Researcher - Machine Learning","@type":"JobPosting","@context":"http://schema.org/"} CSJobDetailModule.init('{\"lastModifiedDateFormatted\":\"2025-12-01\",\"job\":{\"attributes\":{\"type\":\"Job__c\",\"url\":\"/services/data/v65.0/sobjects/Job__c/a03Vo00000Y5g1UIAR\"},\"Id\":\"a03Vo00000Y5g1UIAR\",\"Name\":\"Quantitative Researcher - Machine Learning\",\"Assigned_Internal_Recruiter__c\":\"005j000000EWCJ4AAP\",\"Job_Code__c\":\"CSS-0013280\",\"Experience__c\":\"Early Career\",\"Company__c\":\"001j000000VbgA3AAJ\",\"Posted_Location__c\":\"New York\",\"Area__c\":\"Investing\",\"Team__c\":\"Systematic Investing\",\"Summary__c\":\"We are seeking a quantitative researcher for the Cubist Machine Learning Research group with experience in machine learning.\",\"Job_Description_External__c\":\"\u003Ch3\u003EAbout Cubist\u003C/h3\u003E\\n\u003Cp\u003ECubist Systematic Strategies, an affiliate of Point72, deploys systematic, computer-driven trading strategies across multiple liquid asset classes, including equities, futures and foreign exchange. The core of our effort is rigorous research into a wide range of market anomalies, fueled by our unparalleled access to a wide range of publicly available data sources.\u003C/p\u003E\u003Cbr\u003E\u003Ch3\u003ERole/Responsibilities:\u003C/h3\u003E\\n\u003Cp\u003EWe are seeking a quantitative researcher for the Cubist Machine Learning Research group with experience in machine learning, especially recent deep learning and natural language processing technology.\u003C/p\u003E\u003Cp\u003E\u003Cbr\u003E\u003C/p\u003E\u003Cp\u003EResearchers will use a rigorous scientific method to develop sophisticated trading models and shape our insights into how the markets will behave. Successful researchers manage all aspects of the research process including data ingestion and processing, data analysis, methodology selection, implementation and testing, prototyping, and performance evaluation.\u003C/p\u003E\u003Cp\u003E\u003Cbr\u003E\u003C/p\u003E\u003Cp\u003EResearchers will be introduced to industry standard datasets, including understanding which data may be relevant to a certain model or financial problem; how to collect, parse, and clean the data; how to incorporate the data into innovative functional models; how to construct and develop features from raw data; and how to estimate effectiveness of such features.\u003C/p\u003E\u003Cp\u003E\u003Cbr\u003E\u003C/p\u003E\u003Cp\u003EResearchers will also be provided with the opportunity to implement the full breadth of their knowledge and training to actively participate in all stages of research & development of financial models through use of machine learning. Based on experience from working with existing industry-standard models and algorithms, researchers will learn how to construct their own models in order to solve complex financial problems and enhance data prediction capabilities within the financial services industry. \u003C/p\u003E\u003Cbr\u003E\u003Ch3\u003ERequirements:\u003C/h3\u003E\\n\u003Cul\u003E\u003Cli\u003EPhD or PhD candidate in machine learning, computer science, statistics, or a related field\u003C/li\u003E\u003Cli\u003EExperience with sequential modeling and time series forecasting using deep learning \u003C/li\u003E\u003Cli\u003EExperience with deep neural networks and representation learning \u003C/li\u003E\u003Cli\u003EPrior experience working in a data driven research environment\u003C/li\u003E\u003Cli\u003EExperience with translating mathematical models and algorithms into code\u003C/li\u003E\u003Cli\u003EProficient in programming languages such as Python and R\u003C/li\u003E\u003Cli\u003EExperience with machine learning software libraries such as TensorFlow or PyTorch\u003C/li\u003E\u003Cli\u003EExperience with natural language processing technology a strong plus\u003C/li\u003E\u003Cli\u003EExcellent analytical skills, with strong attention to detail\u003C/li\u003E\u003Cli\u003EInterest in applying machine learning to finance\u003C/li\u003E\u003Cli\u003ECollaborative mindset with strong independent research ability\u003C/li\u003E\u003Cli\u003EStrong written and verbal communication skills\u003C/li\u003E\u003C/ul\u003E\u003Cbr\u003E\u003Cp\u003EThe annual base salary range for this role is $200,000-$300,000 (USD) , which does not include discretionary bonus compensation or our comprehensive benefits package. Actual compensation offered to the successful candidate may vary from posted hiring range based upon geographic location, work experience, education, and/or skill level, among other things.\u003C/p\u003E\u003Cbr\u003E\",\"Japanese_Job_Description_External__c\":\"\u003Cbr\u003E\u003Cbr\u003E\u003Cbr\u003E\",\"Transcript_Optional__c\":false,\"RecordTypeId\":\"012j0000000tcfpAAA\",\"Apply_Now_URL__c\":\"https://grnh.se/cc6a1e5e2us\",\"Type__c\":\"Full Time\",\"LastModifiedDate\":\"2025-12-01T10:41:02.000+0000\",\"Location__c\":\"New York, New York\",\"Company__r\":{\"attributes\":{\"type\":\"Account\",\"url\":\"/services/data/v65.0/sobjects/Account/001j000000VbgA3AAJ\"},\"Business__c\":\"Cubist\",\"Name\":\"Cubist Systematic Strategies, LLC\",\"Id\":\"001j000000VbgA3AAJ\",\"RecordTypeId\":\"012j0000000tIlgAAE\"},\"RecordType\":{\"attributes\":{\"type\":\"RecordType\",\"url\":\"/services/data/v65.0/sobjects/RecordType/012j0000000tcfpAAA\"},\"DeveloperName\":\"Cubist\",\"Name\":\"Cubist\",\"Id\":\"012j0000000tcfpAAA\"}},\"friendlyJobName\":\"quantitative-researcher-machine-learning\",\"formattedTeam\":\"Systematic Investing\",\"formattedLocation\":\"New York\",\"formattedArea\":\"Investing\"}');